Do you want to publish a course? Click here

Photometric SN Ia Candidates from the Three-Year SDSS-II SN Survey Data

148   0   0.0 ( 0 )
 Added by Masao Sako
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We analyze the three-year SDSS-II Superernova (SN) Survey data and identify a sample of 1070 photometric SN Ia candidates based on their multi-band light curve data. This sample consists of SN candidates with no spectroscopic confirmation, with a subset of 210 candidates having spectroscopic redshifts of their host galaxies measured, while the remaining 860 candidates are purely photometric in their identification. We describe a method for estimating the efficiency and purity of photometric SN Ia classification when spectroscopic confirmation of only a limited sample is available, and demonstrate that SN Ia candidates from SDSS-II can be identified photometrically with ~91% efficiency and with a contamination of ~6%. Although this is the largest uniform sample of SN candidates to date for studying photometric identification, we find that a larger spectroscopic sample of contaminating sources is required to obtain a better characterization of the background events. A Hubble diagram using SN candidates with no spectroscopic confirmation, but with host galaxy spectroscopic redshifts, yields a distance modulus dispersion that is only ~20 - 40% larger than that of the spectroscopically-confirmed SN Ia sample alone with no significant bias. A Hubble diagram with purely photometric classification and redshift-distance measurements, however, exhibit biases that require further investigation for precision cosmology.



rate research

Read More

We present the spectroscopy from 5254 galaxies that hosted supernovae (SNe) or other transient events in the Sloan Digital Sky Survey II (SDSS-II). Obtained during SDSS-I, SDSS-II, and the Baryon Oscillation Spectroscopic Survey (BOSS), this sample represents the largest systematic, unbiased, magnitude limited spectroscopic survey of supernova (SN) host galaxies. Using the host galaxy redshifts, we test the impact of photometric SN classification based on SDSS imaging data with and without using spectroscopic redshifts of the host galaxies. Following our suggested scheme, there are a total of 1166 photometrically classified SNe Ia when using a flat redshift prior and 1126 SNe Ia when the host spectroscopic redshift is assumed. For 1024 (87.8%) candidates classified as likely SNe Ia without redshift information, we find that the classification is unchanged when adding the host galaxy redshift. Using photometry from SDSS imaging data and the host galaxy spectra, we also report host galaxy properties for use in future nalysis of SN astrophysics. Finally, we investigate the differences in the interpretation of the light curve properties with and without knowledge of the redshift. When using the SALT2 light curve fitter, we find a 21% increase in the number of fits that converge when using the spectroscopic redshift. Without host galaxy redshifts, we find that SALT2 light curve fits are systematically biased towards lower photometric redshift estimates and redder colors in the limit of low signal-to-noise data. The general improvements in performance of the light curve fitter and the increased diversity of the host galaxy sample highlights the importance of host galaxy spectroscopy for current photometric SN surveys such as the Dark Energy Survey and future surveys such as the Large Synoptic Survey Telescope.
We study SN 2006oz, a newly-recognized member of the class of H-poor, super-luminous supernovae. We present multi-color light curves from the SDSS-II SN Survey, that cover the rise time, as well as an optical spectrum that shows that the explosion occurred at z~0.376. We fitted black body functions to estimate the temperature and radius evolution of the photosphere and used the parametrized code SYNOW to model the spectrum. We constructed a bolometric light curve and compared it with explosion models. The very early light curves show a dip in the g- and r-bands and a possible initial cooling phase in the u-band before rising to maximum light. The bolometric light curve shows a precursor plateau with a duration of 6-10 days in the rest-frame. A lower limit of M_u < -21.5 can be placed on the absolute peak luminosity of the SN, while the rise time is constrained to be at least 29 days. During our observations, the emitting sphere doubled its radius to 2x10^15 cm, while the temperature remained hot at 15000 K. As for other similar SNe, the spectrum is best modeled with elements including O II and Mg II, while we tentatively suggest that Fe III might be present. We suggest that the precursor plateau might be related to a recombination wave in a circumstellar medium (CSM) and discuss whether this is a common property of all similar explosions. The subsequent rise can be equally well described by input from a magnetar or by ejecta-CSM interaction, but the models are not well constrained owing to the lack of post-maximum observations, and CSM interaction has difficulties accounting for the precursor plateau self-consistently. Radioactive decay is less likely to be the mechanism that powers the luminosity. The host galaxy, detected in deep imaging with the 10 m GTC, is a moderately young and star-forming, but not a starburst, galaxy. It has an absolute magnitude of M_g = -16.9.
We perform a model independent reconstruction of the cosmic expansion rate based on type Ia supernova data. Using the Union 2.1 data set, we show that the Hubble parameter behaviour allowed by the data without making any hypothesis about cosmological model or underlying gravity theory is consistent with a flat LCDM universe having H_0 = 70.43 +- 0.33 and Omega_m=0.297 +- 0.020, weakly dependent on the choice of initial scatter matrix. This is in closer agreement with the recently released Planck results (H_0 = 67.3 +- 1.2, Omega_m = 0.314 +- 0.020) than other standard analyses based on type Ia supernova data. We argue this might be an indication that, in order to tackle subtle deviations from the standard cosmological model present in type Ia supernova data, it is mandatory to go beyond parametrized approaches.
We present the cosmological analysis of 752 photometrically-classified Type Ia Supernovae (SNe Ia) obtained from the full Sloan Digital Sky Survey II (SDSS-II) Supernova (SN) Survey, supplemented with host-galaxy spectroscopy from the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). Our photometric-classification method is based on the SN typing technique of Sako et al. (2011), aided by host galaxy redshifts (0.05<z<0.55). SNANA simulations of our methodology estimate that we have a SN Ia typing efficiency of 70.8%, with only 3.9% contamination from core-collapse (non-Ia) SNe. We demonstrate that this level of contamination has no effect on our cosmological constraints. We quantify and correct for our selection effects (e.g., Malmquist bias) using simulations. When fitting to a flat LambdaCDM cosmological model, we find that our photometric sample alone gives omega_m=0.24+0.07-0.05 (statistical errors only). If we relax the constraint on flatness, then our sample provides competitive joint statistical constraints on omega_m and omega_lambda, comparable to those derived from the spectroscopically-confirmed three-year Supernova Legacy Survey (SNLS3). Using only our data, the statistics-only result favors an accelerating universe at 99.96% confidence. Assuming a constant wCDM cosmological model, and combining with H0, CMB and LRG data, we obtain w=-0.96+0.10-0.10, omega_m=0.29+0.02-0.02 and omega_k=0.00+0.03-0.02 (statistical errors only), which is competitive with similar spectroscopically confirmed SNe Ia analyses. Overall this comparison is re-assuring, considering the lower redshift leverage of the SDSS-II SN sample (z<0.55) and the lack of spectroscopic confirmation used herein. These results demonstrate the potential of photometrically-classified SNe Ia samples in improving cosmological constraints.
We report on the design and performance of the BICEP2 instrument and on its three-year data set. BICEP2 was designed to measure the polarization of the cosmic microwave background (CMB) on angular scales of 1 to 5 degrees ($ell$=40-200), near the expected peak of the B-mode polarization signature of primordial gravitational waves from cosmic inflation. Measuring B-modes requires dramatic improvements in sensitivity combined with exquisite control of systematics. The BICEP2 telescope observed from the South Pole with a 26~cm aperture and cold, on-axis, refractive optics. BICEP2 also adopted a new detector design in which beam-defining slot antenna arrays couple to transition-edge sensor (TES) bolometers, all fabricated on a common substrate. The antenna-coupled TES detectors supported scalable fabrication and multiplexed readout that allowed BICEP2 to achieve a high detector count of 500 bolometers at 150 GHz, giving unprecedented sensitivity to B-modes at degree angular scales. After optimization of detector and readout parameters, BICEP2 achieved an instrument noise-equivalent temperature of 15.8 $mu$K sqrt(s). The full data set reached Stokes Q and U map depths of 87.2 nK in square-degree pixels (5.2 $mu$K arcmin) over an effective area of 384 square degrees within a 1000 square degree field. These are the deepest CMB polarization maps at degree angular scales to date. The power spectrum analysis presented in a companion paper has resulted in a significant detection of B-mode polarization at degree scales.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا