Do you want to publish a course? Click here

A WFC3 study of globular clusters in NGC 4150 - an early-type minor merger

235   0   0.0 ( 0 )
 Added by Sugata Kaviraj
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We combine near-ultraviolet (NUV; 2250 {AA}) and optical (U, B, V, I) imaging from the Wide Field Camera 3 (WFC3), on board the Hubble Space Telescope (HST), to study the globular cluster (GC) population in NGC 4150, a sub-L* (M_B ~ -18.48 mag) early-type minor-merger remnant in the Coma I cloud. We use broadband NUV-optical photometry from the WFC3 to estimate individual ages, metallicities, masses and line-of-sight extinctions [E_(B-V)] for 63 bright (M_V < -5 mag) GCs in this galaxy. In addition to a small GC population with ages greater than 10 Gyr, we find a dominant population of clusters with ages centred around 6 Gyr, consistent with the expected peak of stellar mass assembly in faint early-types residing in low-density environments. The old and intermediate-age GCs in NGC 4150 are metal-poor, with metallicities less than 0.1 ZSun, and reside in regions of low extinction (E_(B-V) < 0.05 mag). We also find a population of young, metal-rich (Z > 0.3 ZSun) clusters that have formed within the last Gyr and reside in relatively dusty (E_(B-V) > 0.3 mag) regions that are coincident with the part of the galaxy core that hosts significant recent star formation. Cluster disruption models (in which ~80-90% of objects younger than a few 10^8 yr dissolve every dex in time) suggest that the bulk of these young clusters are a transient population.



rate research

Read More

134 - R. Mark Crockett 2010
(Abridged) We present a spatially-resolved near-UV/optical study of NGC 4150, using the Wide Field Camera 3 (WFC3) on board the Hubble Space Telescope. Previous studies of this early-type galaxy (ETG) indicate that it has a large reservoir of molecular gas, exhibits a kinematically decoupled core (likely indication of recent merging) and strong, central H_B absorption (indicative of young stars). The core of NGC 4150 shows ubiquitous near-UV emission and remarkable dusty substructure. Our analysis shows this galaxy to lie in the near-UV green valley, and its pixel-by-pixel photometry exhibits a narrow range of near-UV/optical colours that are similar to those of nearby E+A (post-starburst) galaxies. We parametrise the properties of the recent star formation (age, mass fraction, metallicity and internal dust content) in the NGC 4150 pixels by comparing the observed near-UV/optical photometry to stellar models. The typical age of the recent star formation (RSF) is around 0.9 Gyrs, consistent with the similarity of the near-UV colours to post-starburst systems, while the morphological structure of the young component supports the proposed merger scenario. The RSF metallicity, representative of the metallicity of the gas fuelling star formation, is around 0.3 - 0.5 Zsun. Assuming that this galaxy is a merger and that the gas is sourced mainly from the infalling companion, these metallicities plausibly indicate the gas-phase metallicity (GPM) of the accreted satellite. Comparison to the local mass-GPM relation suggests (crudely) that the mass of the accreted system is around 3x10^8 Msun, making NGC 4150 a 1:20 minor merger. A summation of the pixel RSF mass fractions indicates that the RSF contributes about 2-3 percent of the stellar mass. This work reaffirms our hypothesis that minor mergers play a significant role in the evolution of ETGs at late epochs.
This paper explores if, and to what an extent, the stellar populations of early type galaxies can be traced through the colour distribution of their globular cluster systems. The analysis, based on a galaxy sample from the Virgo ACS data, is an extension of a previous approach that has been successful in the cases of the giant ellipticals NGC 1399 and NGC 4486, and assumes that the two dominant GC populations form along diffuse stellar populations sharing the cluster chemical abundances and spatial distributions. The results show that a) Integrated galaxy colours can be matched to within the photometric uncertainties and are consistent with a narrow range of ages; b) The inferred mass to luminosity ratios and stellar masses are within the range of values available in the literature; c) Most globular cluster systems occupy a thick plane in the volume space defined by the cluster formation efficiency, total stellar mass and projected surface mass density. The formation efficiency parameter of the red clusters shows a dependency with projected stellar mass density that is absent for the blue globulars. In turn, the brightest galaxies appear clearly detached from that plane as a possible consequence of major past mergers; d) The stellar mass-metallicity relation is relatively shallow but shows a slope change at $M_*approx 10^{10} M_odot$. Galaxies with smaller stellar masses show predominantly unimodal globular cluster colour distributions. This result may indicate that less massive galaxies are not able to retain chemically enriched intestellar matter.
110 - Lian Tao , Hua Feng , Yue Shen 2017
PHL 6625 is a luminous quasi-stellar object (QSO) at z = 0.3954 located behind the nearby galaxy NGC 247 (z = 0.0005). Hubble Space Telescope (HST) observations revealed an arc structure associated with it. We report on spectroscopic observations with the Very Large Telescope (VLT) and multiwavelength observations from the radio to the X-ray band for the system, suggesting that PHL 6625 and the arc are a close pair of merging galaxies, instead of a strong gravitational lens system. The QSO host galaxy is estimated to be (4-28) x 10^10 M_sun, and the mass of the companion galaxy of is estimated to be M_* = (6.8 +/- 2.4) x 10^9 M_sun, suggesting that this is a minor merger system. The QSO displays typical broad emission lines, from which a black hole mass of about (2-5) x 10^8 M_sun and an Eddington ratio of about 0.01-0.05 can be inferred. The system represents an interesting and rare case where a QSO is associated with an ongoing minor merger, analogous to Arp 142.
We present [Fe/H], ages, and Ca abundances for an initial sample of 10 globular clusters in NGC 5128 obtained from high resolution, high signal-to-noise ratio echelle spectra of their integrated light. All abundances and ages are obtained using our original technique for high resolution integrated light abundance analysis of globular clusters. The clusters have a range in [Fe/H] between -1.6 to -0.2. In this sample, the average [Ca/Fe] for clusters with [Fe/H]<-0.4 is +0.37$pm$0.07, while the average [Ca/Fe] in our MW and M31 GC samples is +0.29 $pm$0.09 and +0.24 $pm$0.10, respectively. This may imply a more rapid chemical enrichment history for NGC 5128 than for either the Milky Way or M31.This sample provides the first quantitative picture of the chemical history of NGC 5128 that is directly comparable to what is available for the Milky Way. Data presented here were obtained with the MIKE echelle spectrograph on the Magellan Clay Telescope.
The interpretation that bimodal colour distributions of globular clusters (GCs) reflect bimodal metallicity distributions has been challenged. Non-linearities in the colour to metallicity
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا