Do you want to publish a course? Click here

Observation of H2O in a strongly lensed Herschel-ATLAS source at z=2.3

164   0   0.0 ( 0 )
 Added by Alain Omont
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Herschel survey, H-ATLAS, with its large areal coverage, has recently discovered a number of bright, strongly lensed high-z submillimeter galaxies. The strong magnification makes it possible to study molecular species other than CO, which are otherwise difficult to observe in high-z galaxies. Among the lensed galaxies already identified by H-ATLAS, the source J090302.9-014127B (SDP.17b) at z = 2.305 is remarkable due to its excitation conditions and a tentative detection of the H2O 202-111 emission line (Lupu et al. 2010). We report observations of this line in SDP.17b using the IRAM interferometer equipped with its new 277- 371GHz receivers. The H2O line is detected at a redshift of z = 2.3049+/-0.0006, with a flux of 7.8+/-0.5 Jy km s-1 and a FWHM of 250+/-60 km s-1. The new flux is 2.4 times weaker than the previous tentative detection, although both remain marginally consistent within 1.6-sigma. The intrinsic line luminosity and ratio of H2O(202-111)/CO8-7 seem comparable with those of the nearby starburst/enshrouded-AGN Mrk 231, suggesting that SDP.17b could also host a luminous AGN. The detection of a strong H2O 202-111 line in SDP.17b implies an efficient excitation mechanism of the water levels that must occur in very dense and warm interstellar gas.



rate research

Read More

While the selection of strongly lensed galaxies with 500{mu}m flux density S_500>100 mJy has proven to be rather straightforward (Negrello et al. 2010), for many applications it is important to analyze samples larger than the ones obtained when confining ourselves to such a bright limit. Moreover, only by probing to fainter flux densities is possible to exploit strong lensing to investigate the bulk of the high-z star-forming galaxy population. We describe HALOS (the Herschel-ATLAS Lensed Objects Selection), a method for efficiently selecting fainter candidate strongly lensed galaxies, reaching a surface density of ~1.5-2 deg^-2, i.e. a factor of about 4 to 6 higher than that at the 100 mJy flux limit. HALOS will allow the selection of up to ~1000 candidate strongly lensed galaxies (with amplifications mu>2) over the full H-ATLAS survey area. Applying HALOS to the H-ATLAS Science Demonstration Phase field (~14.4 deg^2) we find 31 candidate strongly lensed galaxies, whose candidate lenses are identified in the VIKING near-infrared catalog. Using the available information on candidate sources and candidate lenses we tentatively estimate a ~72% purity of the sample. The redshift distribution of the candidate lensed sources is close to that reported for most previous surveys for lensed galaxies, while that of candidate lenses extends to substantially higher redshifts than found in the other surveys. The counts of candidate strongly lensed galaxies are also in good agreement with model predictions (Lapi et al. 2011). Even though a key ingredient of the method is the deep near-infrared VIKING photometry, we show that H-ATLAS data alone allow the selection of a similarly deep sample of candidate strongly lensed galaxies with an efficiency close to 50%; a slightly lower surface density (~1.45 deg^-2) can be reached with a ~70% efficiency.
123 - M. Negrello , R. Hopwood , S. Dye 2013
We report on deep near-infrared observations obtained with the Wide Field Camera 3 (WFC3) onboard the Hubble Space Telescope (HST) of the first five confirmed gravitational lensing events discovered by the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS). We succeed in disentangling the background galaxy from the lens to gain separate photometry of the two components. The HST data allow us to significantly improve on previous constraints of the mass in stars of the lensed galaxy and to perform accurate lens modelling of these systems, as described in the accompanying paper by Dye et al. We fit the spectral energy distributions of the background sources from near-IR to millimetre wavelengths and use the magnification factors estimated by Dye et al. to derive the intrinsic properties of the lensed galaxies. We find these galaxies to have star-formation rates of approximately 400 to 2000 M_sol/yr, with approximately (6-25)x10^10 M_sol of their baryonic mass already turned into stars. At these rates of star formation, all remaining molecular gas will be exhausted in less than 100 Myr, reaching a final mass in stars of a few 10^11 M_sol. These galaxies are thus proto-ellipticals caught during their major episode of star formation, and observed at the peak epoch z=1.5-3 of the cosmic star formation history of the Universe.
462 - C. Yang 2019
Using ALMA, we report high angular-resolution observations of the redshift z=3.63 galaxy, G09v1.97, one of the most luminous strongly lensed galaxies discovered by the H-ATLAS survey. We present 02-04 resolution images of the rest-frame 188 and 419$mu$m dust continuum and the CO(6-5), H2O(211-202) and J=2 H2O+ line emission. We also report the detection of H$_2^{18}$O in this source. The dust continuum and molecular gas emission are resolved into a nearly complete ~15 diameter Einstein ring plus a weaker image in the center, which is caused by a special dual deflector lensing configuration. The observed line profiles of the CO, H2O and H2O+ lines are strikingly similar. In the source plane, we reconstruct the dust continuum images and the spectral cubes of the line emission at sub-kpc scales. The reconstructed dust emission in the source plane is dominated by a compact disk with an effective radius of 0.7kpc plus an overlapping extended disk with a radius twice as large. While the average magnification for the dust continuum is $mu$~10-11, the magnification of the line emission varies 5 to 22 across different velocity components. The emission lines have similar spatial and kinematic distributions. The molecular gas and dust content reveal that G09v1.97 is a gas-rich major merger in its pre-coalescence phase. Both of the merging companions are intrinsically ULIRGs with LIR reaching $gtrsim 4times10^{12}L_odot$, and the total LIR of G09v1.97 is $1.4times10^{13}L_odot$. The approaching southern galaxy shows no obvious kinematic structure with a semi-major half-light radius a_s=0.4kpc, while the receding galaxy resembles an a_s=1.2kpc rotating disk. The two galaxies are separated by a projected distance of 1.3kpc, bridged by weak line emission that is co-spatially located with the cold-dust-emission peak, suggesting a large amount of cold ISM in the interacting region. (abridged)
We present physical properties of two submillimeter selected gravitationally lensed sources, identified in the Herschel Astrophysical Terahertz Large Area Survey. These submillimeter galaxies (SMGs) have flux densities > 100 mJy at 500 um, but are not visible in existing optical imaging. We fit light profiles to each component of the lensing systems in Spitzer IRAC 3.6 and 4.5 um data and successfully disentangle the foreground lens from the background source in each case, providing important constraints on the spectral energy distributions (SEDs) of the background SMG at rest-frame optical-near-infrared wavelengths. The SED fits show that these two SMGs have high dust obscuration with Av ~4 to 5 and star formation rates of ~100 M_sun/yr. They have low gas fractions and low dynamical masses compared to 850 um selected galaxies.
We present a search for 183 GHz H_2O(3_13-2_20) emission in the infrared-luminous quasar MG 0751+2716 with the NRAO Very Large Array (VLA). At z=3.200+/-0.001, this water emission feature is redshifted to 43.6 GHz. As opposed to the faint rotational transitions of HCN (the standard high-density tracer at high-z), H_2O(3_13-2_20) is observed with high maser amplification factors in Galactic star-forming regions. It therefore holds the potential to trace high-density star-forming regions in the distant universe. If indeed all star-forming regions in massively star-forming galaxies at z>3 have similar physical properties as e.g. the Orion or W49N molecular cloud cores, the flux ratio between the maser-amplified H_2O(3_13-2_20) and the thermally excited CO(1-0) transitions may be as high as factor of 20 (but has to be corrected by their relative filling factor). MG 0751+2716 is a strong CO(4-3) emitter, and therefore one of the most suitable targets to search for H_2O(3_13-2_20) at cosmological redshifts. Our search resulted in an upper limit in line luminosity of L(H_2O) < 0.6 x 10^9 K km/s pc^2. Assuming a brightness temperature of T_b(H_2O) ~= 500 K for the maser emission and CO properties from the literature, this translates to a H_2O(3_13-2_20)/CO(4-3) area filling factor of less than 1%. However, this limit is not valid if the H_2O(3_13-2_20) maser emission is quenched, i.e. if the line is only thermally excited. We conclude that, if our results were to hold for other high-z sources, H_2O does not appear to be a more luminous alternative to HCN to detect high-density gas in star-forming environments at high redshift.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا