Do you want to publish a course? Click here

Electromagnetic Energy, Absorption, and Casimir Forces. Inhomogeneous Dielectric Media

128   0   0.0 ( 0 )
 Added by Diego Dalvit
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

A general, exact formula is derived for the expectation value of the electromagnetic energy density of an inhomogeneous absorbing and dispersive dielectric medium in thermal equilibrium, assuming that the medium is well approximated as a continuum. From this formula we obtain the formal expression for the Casimir force density. Unlike most previous approaches to Casimir effects in which absorption is either ignored or admitted implicitly through the required analytic properties of the permittivity, we include dissipation explicitly via the coupling of each dipole oscillator of the medium to a reservoir of harmonic oscillators. We obtain the energy density and the Casimir force density as a consequence of the van der Waals interactions of the oscillators and also from Poyntings theorem.



rate research

Read More

The derivation of Casimir forces between dielectrics can be simplified by ignoring absorption, calculating energy changes due to displacements of the dielectrics, and only then admitting absorption by allowing permittivities to be complex. As a first step towards a better understanding of this situation we consider in this paper the model of a dielectric as a collection of oscillators, each of which is coupled to a reservoir giving rise to damping and Langevin forces on the oscillators and a noise polarization acting as a source of a fluctuating electromagnetic (EM) field in the dielectric. The model leads naturally to expressions for the quantized EM fields that are consistent with those obtained by different approaches, and also results in a fluctuation-dissipation relation between the noise polarization and the imaginary part of the permittivity; comparison with the Rytov fluctuation-dissipation relation employed in the well-known Lifshitz theory for the van der Waals (or Casimir) force shows that the Lifshitz theory is actually a classical stochastic electrodynamical theory. The approximate classical expression for the energy density in a band of frequencies at which absorption in a dielectric is negligible is shown to be exact as a spectral thermal equilibrium expectation value in the quantum-electrodynamical theory. Our main result is the derivation of an expression for the QED energy density of a uniform dispersive, absorbing media in thermal equilibrium. The spectral density of the energy is found to have the same form with or without absorption. We also show how the fluctuation-dissipation theorem ensures a detailed balance of energy exchange between the (absorbing) medium, the reservoir and the EM field in thermal equilibrium.
A new mathematical and computational technique for calculating quantum vacuum expectation values of energy and momentum densities associated with electromagnetic fields in bounded domains containing inhomogeneous media is discussed. This technique is illustrated by calculating the mode contributions to the difference in the vacuum force expectation between opposite ends of an inhomogeneous dielectric non-dispersive medium confined to a perfectly conducting rigid box.
We derive exact expressions for the Casimir scalar interaction energy between media-separated eccentric dielectric cylinders and for the media-separated cylinder-plane geometry using a mode-summation approach. Similarly to the electromagnetic Casimir-Lifshitz interaction energy between fluid-separated planar plates, the force between cylinders is attractive or repulsive depending on the relative values of the permittivities of the three intervening media.
Electromagnetic Casimir stresses are of relevance to many technologies based on mesoscopic devices such as MEMS embedded in dielectric media, Casimir induced friction in nano-machinery, micro-fluidics and molecular electronics. Computation of such stresses based on cavity QED generally require numerical analysis based on a regularization process. A new scheme is described that has the potential for wide applicability to systems involving realistic inhomogeneous media. From a knowledge of the spectrum of the stationary modes of the electromagnetic field the scheme is illustrated by estimating numerically the Casimir stress on opposite faces of a pair of perfectly conducting planes separated by a vacuum and the change in this result when the region between the plates is filled with an incompressible inhomogeneous non-dispersive dielectric.
The resonant absorption of light by an ensemble of absorbers decreases when the resonance is inhomogeneously broadened, as only a fraction of the ensemble contributes to the absorption at any given optical frequency. Recovering the lost absorption cross-section is of great importance for various applications of light-matter interactions, particularly in quantum optics and for few-photon nonlinearities. However, no recovery mechanism has yet been identified and successfully demonstrated. Here, we first formulate the limit set by the inhomogeneity on the absorption and then present a mechanism able to circumvent this limit and fully recover the homogeneous absorption of the ensemble. We experimentally study this mechanism using hot atomic vapor and demonstrate a 5-fold enhancement of the absorption above the inhomogeneous limit. Our scheme relies on light shifts induced by auxiliary fields and is thus applicable to various physical systems and inhomogeneity mechanisms.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا