No Arabic abstract
Using second--order dissipative hydrodynamics coupled self-consistently to the linear $sigma$ model we study the 2+1 dimensional evolution of the fireball created in Au+Au relativistic collisions. We analyze the influence of the dynamics of the chiral fields on the charged-hadron elliptic flow $v_2$ and on the ratio $v_4/(v_2)^2$ for a temperature-independent as well as for a temperature-dependent viscosity-to-entropy ratio $eta/s$ calculated from the linearized Boltzmann equation in the relaxation time approximation. We find that $v_2$ is not very sensitive to the coupling of chiral sources to the hydrodynamic evolution, but the temperature dependence of $eta/s$ plays a much bigger role on this observable. On the other hand, the ratio $v_4/(v_2)^2$ turns out to be much more sensitive than $v_2$ to both the coupling of the chiral sources and the temperature dependence of $eta/s$.
We propose to model the dissipative hydrodynamics used in description of the multiparticle production processes ($d$-hydrodynamics) by a special kind of the perfect nonextensive fluid ($q$-fluid) where $q$ denotes the nonextensivity parameter appearing in the nonextensive Tsallis statistics. The advantage of $q$-hydrodynamics lies in its formal simplicity in comparison to the $d$-hydrodynamics. We argue that parameter $q$ describes summarily (at least to some extent) all dynamical effects behind the viscous behavior of the hadronic fluid.
The stability and causality of the Landau-Lifshitz theory and the Israel-Stewart type causal dissipative hydrodynamics are discussed. We show that the problem of acausality and instability are correlated in relativistic dissipative hydrodynamics and instability is induced by acausality. We further discuss the stability of the scaling solution. The scaling solution of the causal dissipative hydrodynamics can be unstable against inhomogeneous perturbations.
Using relativistic conformal hydrodynamics coupled to the linear $sigma$ model we study the evolution of matter created in heavy--ion collisions. We focus the study on the influence of the dynamics of the chiral fields on the charged-hadron elliptic flow $v_2$ for a temperature--independent as well as for a temperature--dependent $eta/s$ that is calculated from kinetic theory. We find that $v_2$ is not very sensitive to the coupling of chiral fields to the hydrodynamic evolution, but the temperature dependence of $eta/s$ plays a much bigger role on this observable.
We construct the general hydrodynamic description of (3+1)-dimensional chiral charged (quantum) fluids subject to a strong external magnetic field with effective field theory methods. We determine the constitutive equations for the energy-momentum tensor and the axial charge current, in part from a generating functional. Furthermore, we derive the Kubo formulas which relate two-point functions of the energy-momentum tensor and charge current to 27 transport coefficients: 8 independent thermodynamic, 4 independent non-dissipative hydrodynamic, and 10 independent dissipative hydrodynamic transport coefficients. Five Onsager relations render 5 more transport coefficients dependent. We uncover four novel transport effects, which are encoded in what we call the shear-induced conductivity, the two expansion-induced longitudinal conductivities and the shear-induced Hall conductivity. Remarkably, the shear-induced Hall conductivity constitutes a novel non-dissipative transport effect. As a demonstration, we compute all transport coefficients explicitly in a strongly coupled quantum fluid via holography.
A brief introduction to chiral perturbation theory, the effective field theory of quantum chromodynamics at low energies, is given.