Do you want to publish a course? Click here

Abundances in planetary nebulae: NGC1535, NGC6629, He2-108, and Tc1

226   0   0.0 ( 0 )
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

The aim of the paper is to determine abundances in a group of PNe with uniform morphology. The PNe discussed are circular excited by rather low-temperature central stars. The relation between abundance and evolution is discussed. The mid-infrared spectra of NGC1535, NGC6629, He2-108 and Tc1 taken with the Spitzer Space Telescope are presented. These spectra are combined with IUE and visual spectra to obtain complete extinction-corrected spectra from which the abundances are determined. These abundances are more accurate for several reasons, the most important is that the inclusion of the far infrared spectra increases the number of observed ions and makes it possible to include the nebular temperature gradient in the abundance calculation. The abundances of these PNe are compared to those found in five other PNe of similar properties and are further compared with predictions of evolutionary models. From this comparison we conclude that these PNe originated from low mass stars, probably between 1 and 2.5 solar masses and at present have core masses between 0.56 and 0.63 solar masses. A consistent description of the evolution of this class of PNe is found that agrees with the predictions of the present nebular abundances, the individual masses and the luminosities of these PNe. The distances to these nebulae can be found as well.



rate research

Read More

159 - N. C. Sterling 2020
Nebular spectroscopy is a valuable tool for assessing the production of heavy elements by slow neutron(n)-capture nucleosynthesis (the s-process). Several transitions of n-capture elements have been identified in planetary nebulae (PNe) in the last few years, with the aid of sensitive high-resolution near-infrared spectrometers. Combined with optical spectroscopy, the newly discovered near-infrared lines enable more accurate abundance determinations than previously possible, and provide access to elements that had not previously been studied in PNe or their progenitors. Neutron-capture elements have also been detected in PNe in the Sagittarius Dwarf galaxy and in the Magellanic Clouds. In this brief review, I discuss developments in observational studies of s-process enrichments in PNe, with an emphasis on the last five years, and note some open questions and preliminary trends.
Planetary nebulae retain the signature of the nucleosynthesis and mixing events that occurred during the previous AGB phase. Observational signatures complement observations of AGB and post-AGB stars and their binary companions. The abundances of the elements heavier than iron such as Kr and Xe in planetary nebulae can be used to complement abundances of Sr/Y/Zr and Ba/La/Ce in AGB stars, respectively, to determine the operation of the slow neutron-capture process (the s process) in AGB stars. Additionally, observations of the Rb abundance in Type I planetary nebulae may allow us to infer the initial mass of the central star. Several noble gas components present in meteoritic stardust silicon carbide (SiC) grains are associated with implantation into the dust grains in the high-energy environment connected to the fast winds from the central stars during the planetary nebulae phase.
127 - A. L. Mashburn 2016
We present near-infrared spectra of ten planetary nebulae (PNe) in the Large and Small Magellanic Clouds (LMC and SMC), acquired with the FIRE and GNIRS spectrometers on the 6.5-m Baade and 8.1-m Gemini South Telescopes, respectively. We detect Se and/or Kr emission lines in eight of these objects, the first detections of n-capture elements in Magellanic Cloud PNe. Our abundance analysis shows large s-process enrichments of Kr (0.6-1.3 dex) in the six PNe in which it was detected, and Se is enriched by 0.5-0.9 dex in five objects. We also estimate upper limits to Rb and Cd abundances in these objects. Our abundance results for the LMC are consistent with the hypothesis that PNe with 2--3 M$_{odot}$ progenitors dominate the bright end of the PN luminosity function in young gas-rich galaxies. We find no significant correlations between s-process enrichments and other elemental abundances, central star temperature, or progenitor mass, though this is likely due to our small sample size. We determine S abundances from our spectra and find that [S/H] agrees with [Ar/H] to within 0.2 dex for most objects, but is lower than [O/H] by 0.2-0.4 dex in some PNe, possibly due to O enrichment via third dredge-up. Our results demonstrate that n-capture elements can be detected in PNe belonging to nearby galaxies with ground-based telescopes, allowing s-process enrichments to be studied in PN populations with well-determined distances.
Deep spectrophotometry has proved to be a fundamental tool to improve our knowledge on the chemical content of planetary nebulae. With the arrival of very efficient spectrographs installed in the largest ground-based telescopes, outstanding spectra have been obtained. These data are essential to constrain state-of-the-art nucleosynthesis models in asymptotic giant branch stars and, in general, to understand the chemical evolution of our Galaxy. In this paper we review the last advances on the chemical composition of the ionized gas in planetary nebulae based on faint emission lines observed through very deep spectrophotometric data.
Context: In recent years mid- and far infrared spectra of planetary nebulae have been analysed and lead to more accurate abundances. It may be expected that these better abundances lead to a better understanding of the evolution of these objects. Aims: The observed abundances in planetary nebulae are compared to those predicted by the models of Karakas (2003) in order to predict the progenitor masses of the various PNe used. The morphology of the PNe is included in the comparison. Since the central stars play an important role in the evolution, it is expected that this comparison will yield additional information about them. Methods: First the nitrogen/oxygen ratio is discussed with relation to the helium/hydrogen ratio. The progenitor mass for each PNe can be found by a comparison with the models of Karakas. Then the present luminosity of the central stars is determined in two ways: first by computing the central star effective temperature and radius, and second by computing the nebular luminosity from the hydrogen and helium lines. This luminosity is also a function of the initial mass so that these two values of initial mass can be compared. Results: Six of the seven bipolar nebulae can be identified as descendants of high mass stars (4Msun - 6Msun) while the seventh is ambiguous. Most of the elliptical PNe have central stars which descend from low initial mass stars, although there are a few caveats which are discussed. There is no observational evidence for a higher mass for central stars which have a high carbon/oxygen ratio. The evidence provided by the abundance comparison with the models of Karakas is consistent with the HR diagram to which it is compared. In the course of this discussion it is shown how `optically thin nebulae can be separated from those which are optically thick.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا