Do you want to publish a course? Click here

The Optical Gravitational Lensing Experiment. OGLE-III Photometric Maps of the Galactic Bulge Fields

247   0   0.0 ( 0 )
 Added by Michal Szymanski
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present OGLE-III Photometric Maps of the Galactic bulge fields observed during the third phase of the OGLE project. This paper describes the last, concluding set of maps based on OGLE-III data. The maps contain precise, calibrated VI photometry of about 340 million stars from 267 fields in the Galactic bulge observed during entire OGLE-III phase (2002-2009), covering about 92 square degrees in the sky. Precise astrometry of these objects is also provided. We briefly discuss the photometry procedures and the quality of the data. We also present sample data and color-magnitude diagrams of the observed fields. All photometric data are available to the astronomical community from the OGLE Internet archive.



rate research

Read More

We present OGLE-III Photometric Maps of the Galactic disk fields observed during the OGLE-III campaigns for low luminosity transiting objects that led to the discovery of the first transiting exoplanets. The maps contain precise, calibrated VI photometry of about 9 million stars from 21 OGLE-III fields in the Galactic disk observed in the years 2002-2009 and covering more than 7 square degrees in the sky. Precise astrometry of these objects is also provided. We discuss quality of the data and present a few color-magnitude diagrams of the observed fields. All photometric data are available to the astronomical community from the OGLE Internet archive.
We present the OGLE-III Photometric Maps of the Large Magellanic Cloud. They cover about 40 square degrees of the LMC and contain mean, calibrated VI photometry and astrometry of about 35 million stars observed during seven observing seasons of the third phase of the Optical Gravitational Lensing Experiment - OGLE-III. We discuss the quality of data and present color-magnitude diagrams of selected fields. The OGLE-III Photometric Maps of the LMC are available to the astronomical community from the OGLE Internet archive.
We have analyzed the data on 16,836 RR Lyrae (RR Lyr) variables observed toward the Galactic bulge during the third phase of the Optical Gravitational Lensing Experiment (OGLE-III), which took place in 2001-2009. Using these standard candles, we show that the ratio of total to selective extinction toward the bulge is given by R_I=A_I/E(V-I)=1.080+/-0.007 and is independent of color. We demonstrate that the bulge RR Lyr stars form a metal-uniform population, slightly elongated in its inner part. The photometrically derived metallicity distribution is sharply peaked at [Fe/H]=-1.02+/-0.18, with a dispersion of 0.25 dex. In the inner regions (|l|<3, |b|<4) the RR Lyr tend to follow the barred distribution of the bulge red clump giants. The distance to the Milky Way center inferred from the bulge RR Lyr is R_0=8.54+/-0.42 kpc. We report a break in the mean density distribution at a distance of ~0.5 kpc from the center indicating its likely flattening. Using the OGLE-III data, we assess that (4-7)x10^4 type ab RR Lyr variables should be detected toward the bulge area of the on going near-IR VISTA Variables in the Via Lactea (VVV) survey, where the uncertainty partially results from the unknown RR Lyr spatial density distribution within 0.2 kpc from the Galactic center.
288 - R. Poleski 2011
We present the results of a search for High Proper Motion (HPM) stars, i.e. the ones with mu > 100 mas/yr, in the direction to the Magellanic Clouds. This sky area was not examined in detail as the high stellar density hampers efforts in performing high-quality astrometry. Altogether 549 HPM stars were found with median uncertainties of proper motions per coordinate equal to 0.5 mas/yr. The fastest HPM star has the proper motion of 722.19 +/- 0.74 mas/yr. For the majority of objects (70%) parallaxes were also measured. The highest value found is pi = 91.3 +/-1.6 mas. The parallaxes were used to estimate absolute magnitudes which enriched with color information show that 21 of HPM stars are white dwarfs. Other 23 candidate white dwarfs were selected of HPM stars with no measurable parallaxes using color-magnitude diagram. The search for common proper motion binaries revealed 27 such pairs in the catalog. The completeness of the catalog is estimated to be > 80% and it is slightly higher than for previous catalogs in the direction to the Magellanic Clouds.
We present both the technical overview and main science drivers of the fourth phase of the Optical Gravitational Lensing Experiment (hereafter OGLE-IV). OGLE-IV is currently one of the largest sky variability surveys worldwide, targeting the densest stellar regions of the sky. The survey covers over 3000 square degrees in the sky and monitors regularly over a billion sources. The main targets include the inner Galactic Bulge and the Magellanic System. Their photometry spans the range of $12<I<21$ mag and $13<I<21.7$ mag, respectively. Supplementary shallower Galaxy Variability Survey covers the extended Galactic bulge and 2/3 of the whole Galactic disk within the magnitude range of $10<I<19$ mag. All OGLE-IV surveys provide photometry with milli-magnitude accuracy at the bright end. The cadence of observations varies from 19-60 minutes in the inner Galactic bulge to 1-3 days in the remaining Galactic bulge fields, Magellanic System and the Galactic disk. OGLE-IV provides the astronomical community with a number of real time services. The Early Warning System (EWS) contains information on two thousand gravitational microlensing events being discovered in real time annually, the OGLE Transient Detection System (OTDS) delivers over 200 supernovae a year. We also provide the real time photometry of unpredictable variables such as optical counterparts to the X-ray sources and R CrB stars. Hundreds of thousands new variable stars have already been discovered and classified by the OGLE survey. The number of new detections will be at least doubled during the current OGLE-IV phase. The survey was designed and optimized primarily to conduct the second generation microlensing survey for exoplanets. It has already contributed significantly to the increase of the discovery rate of microlensing exoplanets and free-floating planets.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا