No Arabic abstract
We derive dispersion relations for a system of identical particles confined in a two-dimensional annular harmonic well and which interact through a Yukawa potential, e.g., a dusty plasma ring. When the particles are in a single chain (i.e., a one-dimensional ring) we find a longitudinal acoustic mode and a transverse optical mode which show approximate agreement with the dispersion relation for a straight configuration for large radii of the ring. When the radius decreases, the dispersion relations modify: there appears an anticrossing of the modes near the crossing point resulting in a frequency gap between the lower and upper branches of the modified dispersion relations. For the double chain (i.e., a two-dimensional zigzag configuration) the dispersion relation has four branches: longitudinal acoustic and optical and transverse acoustic and optical.
A unified numerically solvable framework for dispersion relations with arbitrary number of species drifting at arbitrary directions and with Krook collision is derived for linear uniform/homogenous kinetic plasma, which largely extended the standard one [say, T. Stix, {em Waves in Plasmas}, AIP Press, 1992]. The purpose of this work is to provide a kinetic plasma dispersion relation tool not only the physical model but also the numerical approach be as general/powerful as possible. As a very general application example, we give the final dispersion relations which assume further the equilibrium distribution function be bi-Maxwellian and including parallel drift, two directions of perpendicular drift (i.e., drift across magnetic field), ring beam and loss-cone. Both electromagnetic and electrostati
One-dimensional and quasi-one-dimensional strongly-coupled dusty plasma rings have been created experimentally. Longitudinal (acoustic) and transverse (optical) dispersion relations for the 1-ring were measured and found to be in very good agreement with the theory for an unbounded straight chain of particles interacting through a Yukawa (i.e., screened Coulomb or Debye-Huckel) potential. These rings provide a new system in which to study one-dimensional and quasi-one-dimensional physics.
A model for the condensation of a dusty plasma is constructed by considering the spherical shielding layers surrounding a dust grain test particle. The collisionless region less than a collision mean free path from the test particle is shown to separate into three concentric layers, each having distinct physics. The method of matched asymptotic expansions is invoked at the interfaces between these layers and provides equations which determine the radii of the interfaces. Despite being much smaller than the Wigner-Seitz radius, the dust Debye length is found to be physically significant because it gives the scale length of a precipitous cut-off of the shielded electrostatic potential at the interface between the second and third layers. Condensation is predicted to occur when the ratio of this cut-off radius to the Wigner-Seitz radius exceeds unity and this prediction is shown to be in good agreement with experiments.
The dielectric function for electron gas with parabolic energy bands is derived in a fractional dimensional space. The static response function shows a good dimensional dependance. The plasma frequencies are obtained from the roots of the dielectric functions. The plasma dispersion shows strong dimensional dependence. It is found that the plasma frequencies in the low dimensional systems are strongly dependent on the wave vector. It is weakly dependent in the three dimensional system and has a finite value at zero wave vector.
Particle dynamics are investigated in plasma turbulence, using self-consistent kinetic simulations, in two dimensions. In steady state, the trajectories of single protons and proton-pairs are studied, at different values of plasma beta (ratio between kinetic and magnetic pressure). For single-particle displacements, results are consistent with fluids and magnetic field line dynamics, where particles undergo normal diffusion for very long times, with higher beta being more diffusive. In an intermediate time range, with separations lying in the inertial range, particles experience an explosive dispersion in time, consistent with the Richardson prediction. These results, obtained for the first time with a self-consistent kinetic model, are relevant for astrophysical and laboratory plasmas, where turbulence is crucial for heating, mixing and acceleration processes.