Constraints on the origin of ultra-high-energy cosmic rays from cosmogenic neutrinos and photons


Abstract in English

We study the production of cosmogenic neutrinos and photons during the extragalactic propagation of ultra-high-energy cosmic rays (UHECRs). For a wide range of models in cosmological evolution of source luminosity, composition and maximum energy we calculate the expected flux of cosmogenic secondaries by normalizing our cosmic ray output to experimental spectra and comparing the diffuse flux of GeV-TeV gamma-rays to the experimental one measured by the Fermi satellite. Most of these models yield significant neutrino fluxes for current experiments like IceCube or Pierre Auger. Furthermore, we discuss the possibilities of signing the presence of UHE proton sources either within or outside the cosmic ray horizon using neutrinos or photons observations even if the cosmic ray composition becomes heavier at the highest energies. We discuss the possible constraints that could be brought on the UHECR origin from the different messengers and energy ranges.

Download