No Arabic abstract
In this Letter we describe a new two-mode system, which consists of Kerr-like medium and down conversion process, called the Kerr-down conversion system. Under a certain condition we can obtain an exact solution of the dynamical equations of motion. For this system we investigate different kinds of quadrature squeezing, e.g., single-mode, two-mode and sum-squeezing. Also we give a more general definition of the principal squeezing. We show that the amounts of nonclassical effects produced by the Kerr-like and down-conversion processes separately are greater than those obtained from the Kerr-down conversion system where both the processes are in competition.
Triplet down conversion, the process of converting one high-energy photon into three low-energy photons, may soon be experimentally feasible due to advances in optical resonator technology. We use quantum phase-space techniques to analyse the process of degenerate intracavity triplet down conversion by solving stochastic differential equations within the truncated positive-P representation. The time evolution of both intracavity mode populations are simulated, and the resulting steady-states are examined as a function of the pump intensity. Quantum effects are most pronounced in the region immediately above the semi-classical pumping threshold, where our numerical results differ significantly from semi-classical predictions. Regimes of measurable squeezing and bipartite entanglement are identified from steady-state spectra of the cavity output fields. We validate the truncated positive-P description against Monte Carlo wave function simulations, finding good agreement for low mode populations.
We propose an experimentally accessible superconducting quantum circuit, consisting of two coplanar waveguide resonators (CWRs), to enhance the microwave squeezing via parametric down-conversion (PDC). In our scheme, the two CWRs are nonlinearly coupled through a superconducting quantum interference device embedded in one of the CWRs. This is equivalent to replacing the transmission line in a flux-driven Josephson parametric amplifier (JPA) by a CWR, which makes it possible to drive the JPA by a quantized microwave field. Owing to this design, the PDC coefficient can be considerably increased to be about tens of megahertz, satisfying the strong-coupling condition. Using the Heisenberg-Langevin approach, we numerically show the enhancement of the microwave squeezing in our scheme. In contrast to the JPA, our proposed system becomes stable around the critical point and can generate stronger transient squeezing. In addition, the strong-coupling PDC can be used to engineer the photon blockade.
The correlation properties of the pump field in spontaneous parametric down-conversion are crucial in determining the degree of entanglement of generated signal and idler photons. We find theoretically that continuous-variable entanglement of the transverse positions and momenta of these photons can be achieved only if the coherence of the pump beam is sufficiently high. The positions of signal and idler photons are found to be correlated, even for an incoherent pump. However, the momenta of the signal and idler photons are not anti-correlated, even though transverse momentum is conserved.
Spontaneous Parametric Down-Conversion (SPDC), also known as parametric fluorescence, parametric noise, parametric scattering and all various combinations of the abbreviation SPDC, is a non-linear optical process where a photon spontaneously splits into two other photons of lower energies. One would think that this article is about particle physics and yet it is not, as this process can occur fairly easily on a day to day basis in an optics laboratory. Nowadays, SPDC is at the heart of many quantum optics experiments for applications in quantum cryptography, quantum simulation, quantum metrology but also for testing fundamentals laws of physics in quantum mechanics. In this article, we will focus on the physics of this process and highlight few important properties of SPDC. There will be two parts: a first theoretical one showing the particular quantum nature of SPDC and the second part, more experimental and in particular focusing on applications of parametric down-conversion. This is clearly a non-exhaustive article about parametric down-conversion as there is a tremendous literature on the subject, but it gives the necessary first elements needed for a novice student or researcher to work on SPDC sources of light.
In ultra- and deep-strong cavity quantum electrodynamics (QED) systems, many intriguing phenomena that do not conserve the excitation number are expected to occur. In this study, we theoretically analyze the optical response of an ultrastrong cavity-QED system in which an atom is coupled to the fundamental and third harmonic modes of a cavity, and report the possibility of deterministic three-photon down-conversion of itinerant photons upon reflection at the cavity. In the conventional parametric down-conversion, a strong input field is needed because of the smallness of the transition matrix elements of the higher order processes. However, if we use an atom-cavity system in an unprecedentedly strong-coupling region, even a weak field in the linear-response regime is sufficient to cause this rare event involving the fourth order transitions.