Rapidly rotating stars show short-period oscillations in magnetic activity and polar appearance of starspots. The aim of this paper is to study large-scale shallow water waves in the tachoclines of rapidly rotating stars and their connection to the periodicity and the formation of starspots at high latitudes. Shallow-water magnetohydrodynamic equations were used to study the dynamics of large-scale waves at the rapidly rotating stellar tachoclines in the presence of toroidal magnetic field. Dispersion relations and latitudinal distribution of wave modes were derived. We found that low-frequency magnetic Rossby waves tend to be located at poles, but high-frequency magnetic Poincare waves are concentrated near the equator in rapidly rotating stars. These results have important implications for the evolution of the stellar wind in young Sun-like stars. Unstable magnetic Rossby waves may lead to the local enhancement of magnetic flux at high latitudes of tachoclines in rapidly rotating stars. The enhanced magnetic flux may rise upwards owing to the magnetic buoyancy in the form of tubes and appear as starspots at polar regions. Magnetic Rossby waves may also cause observed short-term periodicity in the stellar magnetic activity.
Rapidly rotating giant stars are relatively rare and may represent important stages of stellar evolution, resulting from stellar coalescence of close binary systems or accretion of sub-stellar companions by their hosting stars. In the present letter we report 17 giant stars observed in the scope of the Kepler space mission exhibiting rapid rotation behavior. For the first time the abnormal rotational behavior for this puzzling family of stars is revealed by direct measurements of rotation, namely from photometric rotation period, exhibiting very short rotation period with values ranging from 13 to 55 days. This finding points for remarkable surface rotation rates, up to 18 times the Sun rotation. These giants are combined with 6 other recently listed in the literature for mid-IR diagnostic based on WISE information, from which a trend for an infrared excess is revealed for at least a half of the stars, but at a level far lower than the dust excess emission shown by planet-bearing main-sequence stars.
Stars can either be formed in or captured by the accretion disks in Active Galactic Nuclei (AGN). These AGN stars are irradiated and subject to extreme levels of accretion, which can turn even low-mass stars into very massive ones ($M > 100 {rm M}_odot$) whose evolution may result in the formation of massive compact objects ($M > 10 {rm M}_odot$). Here we explore the spins of these AGN stars and the remnants they leave behind. We find that AGN stars rapidly spin up via accretion, eventually reaching near-critical rotation rates. They further maintain near-critical rotation even as they shed their envelopes, become compact, and undergo late stages of burning. This makes them good candidates to produce high-spin massive black holes, such as the ones seen by LIGO-Virgo in GW190521g, as well as long Gamma Ray Bursts (GRBs) and the associated chemical pollution of the AGN disk.
A new two dimensional non-perturbative code to compute accurate oscillation modes of rapidly rotating stars is presented. The 2D calculations fully take into account the centrifugal distorsion of the star while the non perturbative method includes the full influence of the Coriolis acceleration. This 2D non-perturbative code is used to study pulsational spectra of highly distorted evolved models of stars. 2D models of stars are obtained by a self consistent method which distorts spherically averaged stellar models a posteriori. We are also able to compute gravito-acoustic modes for the first time in rapidly rotating stars. We present the dynamics of pulsation modes in such models, and show regularities in their frequency spectra.
We continue our studies on stellar latitudinal differential rotation. The presented work is a sequel of the work of Reiners et al. who studied the spectral line broadening profile of hundreds of stars of spectral types A through G at high rotational speed (vsini > 12 km/s). While most stars were found to be rigid rotators, only a few tens show the signatures of differential rotation. The present work comprises the rotational study of some 180 additional stars. The overall broadening profile is derived according to Reiners et al. from hundreds of spectral lines by least-squares deconvolution, reducing spectral noise to a minimum. Projected rotational velocities vsini are measured for about 120 of the sample stars. Differential rotation produces a cuspy line shape which is best measured in inverse wavelength space by the first two zeros of its Fourier transform. Rigid and differential rotation can be distinguished for more than 50 rapid rotators (vsini > 12 km/s) among the sample stars from the available spectra. Ten stars with significant differential rotation rates of 10-54 % are identified, which add to the few known rapid differential rotators. Differential rotation measurements of 6 % and less for four of our targets are probably spurious and below the detection limit. Including these objects, the line shapes of more than 40 stars are consistent with rigid rotation.
Magnetic fields of late-type stars are presumably generated by a dynamo mechanism at the interface layer between the radiative interior and the outer convective zone. The Rossby number, which is related to the dynamo process, shows an observational correlation with activity. It represents the ratio between the rotation period of the star and the local convective turnover time. The former is well determined from observations but the latter is estimated by an empirical iterated function depending on the color index (B-V) and the mixing-length parameter. We computed the theoretical Rossby number of stellar models with the TGEC code, and analyze its evolution with time during the main sequence. We estimated a function for the local convective turnover time corresponding to a mixing-length parameter inferred from a solar model, and compare our results to the estimated Rossby number of 33 solar analogs and twins, observed with the spectropolarimeters ESPaDOnS@CFHT and Narval@LBT.