Do you want to publish a course? Click here

Magnetic Fields in Earth-like Exoplanets and Implications for Habitability around M-dwarfs

171   0   0.0 ( 0 )
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present estimations of dipolar magnetic moments for terrestrial exoplanets using the Olson & Christiansen (2006) scaling law and assuming their interior structure is similar to Earth. We find that the dipolar moment of fast rotating planets (where the Coriolis force dominates convection in the core), may amount up to ~80 times the magnetic moment of Earth, M_Earth, for at least part of the planets lifetime. For very slow rotating planets (where the force of inertia dominates), the dipolar magnetic moment only reaches up to ~1.5 M_Earth. Applying our calculations to currently confirmed rocky exoplanets, we find that CoRoT-7b, Kepler-10b and 55 Cnc e can sustain dynamos up to ~ 18, 15 and 13 M_Earth, respectively. Our results also indicate that the magnetic moment of rocky exoplanets not only depends on their rotation rate, but also on their formation history, thermal state, age and composition, as well as the geometry of the field. These results apply to all rocky planets, but have important implications for the particular case of exoplanets in the Habitable Zone of M-dwarfs.



rate research

Read More

Eccentricity is an important orbital parameter. Understanding its effect on planetary climate and habitability is critical for us to search for a habitable world beyond our solar system. The orbital configurations of M-dwarf planets are always tidally-locked at resonance states, which are quite different from those around Sun-like stars. M-dwarf planets need to be investigated separately. Here we use a comprehensive three-dimensional atmospheric general circulation model to systematically investigate how eccentricity influences climate and habitability of M-dwarf exoplanets. The simulation results show that (1) the seasonal climatic cycles of such planets are very weak even for e = 0.4. It is unlikely that an aqua planet falls out of a habitable zone during its orbit. (2) The annual global mean surface temperature significantly increases with increased eccentricity, due to the decrease of the cloud albedo. Both the runaway greenhouse inner edge and moist greenhouse inner edge shift outward. (3) Planets in an eccentric orbit can be captured in other spin-orbit resonance states which lead to different climate patterns, namely eyeball pattern and striped-ball pattern.The striped-ball pattern has evidently higher surface temperatures due to the reduced planetary albedo. Near the outer edge, planets with p = 1.0 and 2.0 are more resistant to the snowball state due to more locally-concentrated stellar fluxes. Thus, planets with integer spin-orbit resonance numbers have wider habitable zones than those with half-integer spin-orbit resonance states. Above all, as a comparison to circular orbit, eccentricity shrinks the width of the habitable zone.
Context. Teegardens Star is the brightest and one of the nearest ultra-cool dwarfs in the solar neighbourhood. For its late spectral type (M7.0V), the star shows relatively little activity and is a prime target for near-infrared radial velocity surveys such as CARMENES. Aims. As part of the CARMENES search for exoplanets around M dwarfs, we obtained more than 200 radial-velocity measurements of Teegardens Star and analysed them for planetary signals. Methods. We find periodic variability in the radial velocities of Teegardens Star. We also studied photometric measurements to rule out stellar brightness variations mimicking planetary signals. Results. We find evidence for two planet candidates, each with $1.1M_oplus$ minimum mass, orbiting at periods of 4.91 and 11.4 d, respectively. No evidence for planetary transits could be found in archival and follow-up photometry. Small photometric variability is suggestive of slow rotation and old age. Conclusions. The two planets are among the lowest-mass planets discovered so far, and they are the first Earth-mass planets around an ultra-cool dwarf for which the masses have been determined using radial velocities.
A number of transiting, potentially habitable Earth-sized exoplanets have recently been detected around several nearby M dwarf stars. These worlds represent important targets for atmospheric characterization for the upcoming NASA James Webb Space Telescope. Given that available time for exoplanet characterization will be limited, it is critically important to first understand the capabilities and limitations of JWST when attempting to detect atmospheric constituents for potentially Earth-like worlds orbiting cool stars. Here, we explore coupled climate-chemistry atmospheric models for Earth-like planets orbiting a grid of M dwarf hosts. Using a newly-developed and validated JWST instrument model - the JWST Exoplanet Transit Simulator (JETS) - we investigate the detectability of key biosignature and habitability indicator gaseous species for a variety of relevant instruments and observing modes. Spectrally-resolved detection scenarios as well as cases where the spectral impact of a given species is integrated across the entire range of an instrument/mode are considered and serve to highlight the importance of considering information gained over an entire observable spectral range. When considering the entire spectral coverage of an instrument/mode, detections of methane, carbon dioxide, oxygen and water at signal-to-noise ratio 5 could be achieved with observations of several tens of transits (or less) for cloud-free Earth-like worlds orbiting mid- to late-type M dwarfs at system distances of up to 10-15 pc. When compared to previous results, requisite exposure times for gas species detection depend on approaches to quantifying the spectral impact of the species as well as underlying photochemical model assumptions. Thus, constraints on atmospheric abundances, even if just upper limits, by JWST have the potential to further our understanding of terrestrial atmospheric chemistry.
The interaction between Earth-like exoplanets and the magnetic field of low-mass host stars are considered to produce weak emission signals at radio frequencies. A study using LOFAR data announced the detection of radio emission from the mid M-type dwarf GJ 1151 that could potentially arise from a close-in terrestrial planet. Recently, the presence of a 2.5-Me planet orbiting GJ 1151 with a 2-day period has been claimed using 69 radial velocities (RVs) from the HARPS-N and HPF instruments. We have obtained 70 new high-precision RV measurements in the framework of the CARMENES M-dwarf survey and use these data to confirm the presence of the claimed planet and to place limits on possible planetary companions in the GJ 1151 system. We analyse the periodicities present in the combined RV data sets from all three instruments and calculate the detection limits for potential planets in short-period orbits. We cannot confirm the recently-announced candidate planet and conclude that the 2-day signal in the HARPS-N and HPF data sets is most probably produced by a long-term RV variability possibly arising from an outer planetary companion yet unconstrained. We calculate a 99.9% significance detection limit of 1.50 ms-1 in the RV semi-amplitude, which places upper limits of 0.7 Me and 1.2 Me to the minimum masses of any potential exoplanets with orbital periods of 1 and 5 days, respectively.
One of the possible signs of life on distant habitable exoplanets is the red-edge, which is a rise in the reflectivity of planets between visible and near-infrared (NIR) wavelengths. Previous studies suggested the possibility that the red-edge position for habitable exoplanets around M-dwarfs may be shifted to a longer wavelength than that for Earth. We investigated plausible red-edge position in terms of the light environment during the course of the evolution of phototrophs. We show that phototrophs on M-dwarf habitable exoplanets may use visible light when they first evolve in the ocean and when they first colonize the land. The adaptive evolution of oxygenic photosynthesis may eventually also use NIR radiation, by one of two photochemical reaction centers, with the other center continuing to use visible light. These two-color reaction centers can absorb more photons, but they will encounter difficulty in adapting to drastically changing light conditions at the boundary between land and water. NIR photosynthesis can be more productive on land, though its evolution would be preceded by the Earth-type vegetation. Thus, the red-edge position caused by photosynthetic organisms on habitable M-dwarf exoplanets could initially be similar to that on Earth and later move to a longer wavelength.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا