The existence of a secluded gauge sector could explain several puzzling astrophysical observations. This hypothesis can be tested at low energy e+e- colliders such as DAPHNE. Preliminary results obtained with KLOE data and perpectives for the KLOE-2 run, where a larger data sample is expected, are discussed.
Direct searches of dark matter are performed at accelerator facilities. The existence of a new vector boson has been postulated in different scenarios where in the most basic scheme the coupling to the SM can be achieved via a kinetic mixing term due to the U boson. The KLOE experiment at DA$phi$NE searched for the U boson both in Dalitz decays of the $phi$ meson and in continuum events. For all of these searches an upper limit for the U boson coupling $epsilon^{2}$ has been established in the mass range $50 , text{MeV} < m_U < 1000,text{MeV}$. A summary of the different models and searches along with results are presented.
We present results from CDF and D0 on direct searches for high mass standard model (SM) Higgs boson (H) in ppbar collisions at the Fermilab Tevatron at sqrt(s) = 1.96 TeV. Compared to previous Higgs boson Tevatron combinations, more data and new channels (H -> W+W- -> lnujj, H -> WW -> l+tau + X and trilepton final states) have been added. Most previously used channels have been reanalyzed to gain sensitivity. Analyzing 5.9 fb^-1 of data at CDF, and 5.4-6.7 fb^-1 at D0, the combination excludes with 95% C.L. a standard model Higgs boson in the mass range of m_H = 158-175 GeV/c2.
The search for the Higgs boson, both in the context of the standard model and extensions to it, has been a key focus during Run II of the Tevatron. I report on the status of these searches, which are highlighted by evidence at the 3 standard deviation level for the SM Higgs in its $bbar{b}$ decay mode, the strongest direct evidence to date for fermionic couplings of the Higgs boson.
A summary of the Higgs boson searches by the ATLAS and CMS collabrations using 1 f b-1 of LHC data is presented, concentrating on the Standard Model Higgs boson. Both experiments have the sensitivity to exclude at 95% CL a Standard Model Higgs boson in most of the Higgs boson mass region between about 130 GeV and 400 GeV. The observed data allow the exclusion of a Higgs Boson of mass 155 GeV to 190 GeV and 295 GeV to 450 GeV (ATLAS) and 149 GeV to 206 GeV and 300 GeV to 440 GeV (CMS). The lower limits are not as constraining as might be expected due to an excess in both experiments of order 2-3{sigma} which could be related to a low mass Higgs boson or to a statistical fluctuation.
The KLOE Collaboration completed the full data taking on March 2006, acquiring 2.5 fb ^ -1 at the peak of the phi and other 240 pb ^ -1 off-peak. A new Collaboration is working on a new project, called KLOE-2, to refine and extend the KLOE physics program. We present here some preliminary and published results from the KLOE Collaboration on the pseudoscalar eta meson and the study of gamma gamma processes, that are among the main points of the KLOE-2 physics program.