Deep imaging of Fanaroff-Riley Class I radio galaxies with lobes


Abstract in English

We present deep, high-resolution imaging of the nearby Fanaroff-Riley Class I (FR I) radio galaxies NGC 193, B2 0206+35, B2 0755+37 and M 84 at frequencies of 4.9 and 1.4 GHz using new and archival multi-configuration observations from the Very Large Array. In addition, we describe lower-resolution observations of B2 0326+39 and a reanalysis of our published images of 3C 296. All of these radio galaxies show twin jets and well-defined lobes or bridges of emission, and we examine the common properties of this class of source. We show detailed images of total intensity, brightness gradient, spectral index, degree of polarization and projected magnetic-field direction. The jet bases are very similar to those in tailed twin-jet sources and show the characteristics of decelerating, relativistic flows. Except on one side of M 84, we find that the jets can be traced at least as far as the ends of the lobes, where they often form structures which we call caps with sharp outer brightness gradients. Continuing, but less well collimated flows back into the lobes from the caps can often be identified by their relatively flat spectral indices. The lobes in these radio galaxies are similar in morphology, spectral-index distribution and magnetic-field structure to those in more powerful (FR II) sources, but lack hot-spots or other evidence for strong shocks at the ends of the jets. M 84 may be an intermediate case between lobed and tailed sources, in which one jet does not reach the end of its lobe, but disrupts to form a bubble.

Download