No Arabic abstract
Half a century has passed since the foundation of nuclear astrophysics. Since then, this discipline has reached its maturity. Today, nuclear astrophysics constitutes a multidisciplinary crucible of knowledge that combines the achievements in theoretical astrophysics, observational astronomy, cosmochemistry and nuclear physics. New tools and developments have revolutionized our understanding of the origin of the elements: supercomputers have provided astrophysicists with the required computational capabilities to study the evolution of stars in a multidimensional framework; the emergence of high-energy astrophysics with space-borne observatories has opened new windows to observe the Universe, from a novel panchromatic perspective; cosmochemists have isolated tiny pieces of stardust embedded in primitive meteorites, giving clues on the processes operating in stars as well as on the way matter condenses to form solids; and nuclear physicists have measured reactions near stellar energies, through the combined efforts using stable and radioactive ion beam facilities. This review provides comprehensive insight into the nuclear history of the Universe and related topics: starting from the Big Bang, when the ashes from the primordial explosion were transformed to hydrogen, helium, and few trace elements, to the rich variety of nucleosynthesis mechanisms and sites in the Universe. Particular attention is paid to the hydrostatic processes governing the evolution of low-mass stars, red giants and asymptotic giant-branch stars, as well as to the explosive nucleosynthesis occurring in core-collapse and thermonuclear supernovae, gamma-ray bursts, classical novae, X-ray bursts, superbursts, and stellar mergers.
This white paper informs the nuclear astrophysics community and funding agencies about the scientific directions and priorities of the field and provides input from this community for the 2015 Nuclear Science Long Range Plan. It summarizes the outcome of the nuclear astrophysics town meeting that was held on August 21-23, 2014 in College Station at the campus of Texas A&M University in preparation of the NSAC Nuclear Science Long Range Plan. It also reflects the outcome of an earlier town meeting of the nuclear astrophysics community organized by the Joint Institute for Nuclear Astrophysics (JINA) on October 9- 10, 2012 Detroit, Michigan, with the purpose of developing a vision for nuclear astrophysics in light of the recent NRC decadal surveys in nuclear physics (NP2010) and astronomy (ASTRO2010). The white paper is furthermore informed by the town meeting of the Association of Research at University Nuclear Accelerators (ARUNA) that took place at the University of Notre Dame on June 12-13, 2014. In summary we find that nuclear astrophysics is a modern and vibrant field addressing fundamental science questions at the intersection of nuclear physics and astrophysics. These questions relate to the origin of the elements, the nuclear engines that drive life and death of stars, and the properties of dense matter. A broad range of nuclear accelerator facilities, astronomical observatories, theory efforts, and computational capabilities are needed. With the developments outlined in this white paper, answers to long standing key questions are well within reach in the coming decade.
Neutron star (NS) merger ejecta offer a viable site for the production of heavy r-process elements with nuclear mass numbers A > 140. The crucial role of fission recycling is responsible for the robustness of this site against many astrophysical uncertainties, but calculations sensitively depend on nuclear physics. In particular the fission fragment yields determine the creation of 110 < A < 170 nuclei. Here we apply a new scission-point model, called SPY, to derive the fission fragment distribution (FFD) of all relevant neutron-rich, fissioning nuclei. The model predicts a doubly asymmetric FFD in the abundant A ~ 278 mass region that is responsible for the final recycling of the fissioning material. Using ejecta conditions based on relativistic NS merger calculations we show that this specific FFD leads to a production of the A ~ 165 rare-earth peak that is nicely compatible with the abundance patterns in the Sun and metal-poor stars. This new finding further strengthens the case of NS mergers as possible dominant origin of r-nuclei with A > 140.
The production of about half of the heavy elements found in nature is assigned to a specific astrophysical nucleosynthesis process: the rapid neutron capture process (r-process). Although this idea has been postulated more than six decades ago, the full understanding faces two types of uncertainties/open questions: (a) The nucleosynthesis path in the nuclear chart runs close to the neutron-drip line, where presently only limited experimental information is available, and one has to rely strongly on theoretical predictions for nuclear properties. (b) While for many years the occurrence of the r-process has been associated with supernovae, more recent studies have cast substantial doubts on this environment. Alternative scenarios include the mergers of neutron stars, neutron-star black hole mergers, but possibly also rare classes of supernovae as well as hypernovae/collapsars with polar jet ejecta and also accretion disk outflows related to the collapse of fast rotating massive stars with high magnetic fields. Stellar r-process abundance observations, have provided insights into, and constraints on the frequency of and conditions in the responsible stellar production sites. One of them, neutron star mergers, was just identified and related to the Gravitational Wave event GW170817. High resolution observations, increasingly more precise due to improved experimental atomic data, have been particularly important in defining the heavy element abundance patterns of the old halo stars, and thus determining the extent, and nature, of the earliest nucleosynthesis in our Galaxy. Combining new results and important breakthroughs in the related nuclear, atomic and astronomical fields of science, this review attempts to provide an answer to the question How Were the Elements from Iron to Uranium Made? (Abridged)
The fundamental processes by which nuclear energy is generated in the Sun have been known for many years. However, continuous progress in areas such as neutrino experiments, stellar spectroscopy and helioseismic data and techniques requires ever more accurate and precise determination of nuclear reaction cross sections, a fundamental physical input for solar models. In this work, we review the current status of (standard) solar models and present a detailed discussion on the relevance of nuclear reactions for detailed predictions of solar properties. In addition, we also provide an analytical model that helps understanding the relation between nuclear cross sections, neutrino fluxes and the possibility they offer for determining physical characteristics of the solar interior. The latter is of particular relevance in the context of the conundrum posed by the solar composition, the solar abundance problem, and in the light of the first ever direct detection of solar CN neutrinos recently obtained by the Borexino collaboration. Finally, we present a short list of wishes about the precision with which nuclear reaction rates should be determined to allow for further progress in our understanding of the Sun.
The structure and composition of the inner crust of neutron stars, as well as global stellar properties such as radius and moment of inertia, have been shown to correlate with parameters characterizing the symmetry energy of nuclear matter such as its magnitude J and density dependence L at saturation density. It is thus mutually beneficial to nuclear physicists and astrophysicists to examine the combined effects of such correlations on potential neutron star observables in the light of recent experimental and theoretical constraints on J, L, and relationships between them. We review some basic correlations between these nuclear and astrophysical observables, and illustrate the impact of recent progress in constraining the J-L parameter space on the composition of the inner crust, crust-core transition density and pressure, and extent of the hypothesized pasta region. We use a simple compressible liquid drop model in conjunction with a simple model of nuclear matter which allows for independent, smooth, variation of the J and L. We extend the model into the core using the same nuclear matter model to explore the effects on global crust and core properties, and on potential observables such as crust oscillation frequencies and mechanically supported crust deformation. Throughout we illustrate the importance of the relationship between J and L implicit in a particular model of nuclear matter to the predictions of neutron star properties.