Do you want to publish a course? Click here

Controllability of Complex Networks with Nonlinear Dynamics

222   0   0.0 ( 0 )
 Added by Jie Ren
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

Sun et al. provided an insightful comment arXiv:1108.5739v1 on our manuscript entitled Controllability of Complex Networks with Nonlinear Dynamics on arXiv. We agree on their main point that linearization about locally desired states can be violated in general by the breakdown of local control of the linearized complex network with nonlinear state. Therefore, we withdraw our manuscript. However, other than nonlinear dynamics, our claim that a single-node-control can fully control the general bidirectional/undirected linear network with 1D self-dynamics is still valid, which is similar to (but different from) the conclusion of arXiv:1106.2573v3 that all-node-control with a single signal can fully control any direct linear network with nodal-dynamics (1D self-dynamics).



rate research

Read More

Community definitions usually focus on edges, inside and between the communities. However, the high density of edges within a community determines correlations between nodes going beyond nearest-neighbours, and which are indicated by the presence of motifs. We show how motifs can be used to define general classes of nodes, including communities, by extending the mathematical expression of Newman-Girvan modularity. We construct then a general framework and apply it to some synthetic and real networks.
171 - Jiuhua Zhao , Qipeng Liu , 2014
We consider a dynamical network model in which two competitors have fixed and different states, and each normal agent adjusts its state according to a distributed consensus protocol. The state of each normal agent converges to a steady value which is a convex combination of the competitors states, and is independent of the initial states of agents. This implies that the competition result is fully determined by the network structure and positions of competitors in the network. We compute an Influence Matrix (IM) in which each element characterizing the influence of an agent on another agent in the network. We use the IM to predict the bias of each normal agent and thus predict which competitor will win. Furthermore, we compare the IM criterion with seven node centrality measures to predict the winner. We find that the competitor with higher Katz Centrality in an undirected network or higher PageRank in a directed network is much more likely to be the winner. These findings may shed new light on the role of network structure in competition and to what extent could competitors adjust network structure so as to win the competition.
As a fundamental challenge in vast disciplines, link prediction aims to identify potential links in a network based on the incomplete observed information, which has broad applications ranging from uncovering missing protein-protein interaction to predicting the evolution of networks. One of the most influential methods rely on similarity indices characterized by the common neighbors or its variations. We construct a hidden space mapping a network into Euclidean space based solely on the connection structures of a network. Compared with real geographical locations of nodes, our reconstructed locations are in conformity with those real ones. The distances between nodes in our hidden space could serve as a novel similarity metric in link prediction. In addition, we hybrid our hidden space method with other state-of-the-art similarity methods which substantially outperforms the existing methods on the prediction accuracy. Hence, our hidden space reconstruction model provides a fresh perspective to understand the network structure, which in particular casts a new light on link prediction.
We demonstrate that the self-similarity of some scale-free networks with respect to a simple degree-thresholding renormalization scheme finds a natural interpretation in the assumption that network nodes exist in hidden metric spaces. Clustering, i.e., cycles of length three, plays a crucial role in this framework as a topological reflection of the triangle inequality in the hidden geometry. We prove that a class of hidden variable models with underlying metric spaces are able to accurately reproduce the self-similarity properties that we measured in the real networks. Our findings indicate that hidden geometries underlying these real networks are a plausible explanation for their observed topologies and, in particular, for their self-similarity with respect to the degree-based renormalization.
Network science have constantly been in the focus of research for the last decade, with considerable advances in the controllability of their structural. However, much less effort has been devoted to study that how to improve the controllability of complex networks. In this paper, a new algorithm is proposed to improve the controllability of complex networks by rewiring links regularly which transforms the network structure. Then it is demonstrated that our algorithm is very effective after numerical simulation experiment on typical network models (Erdos-Renyi and scale-free network). We find that our algorithm is mainly determined by the average degree and positive correlation of in-degree and out-degree of network and it has nothing to do with the network size. Furthermore, we analyze and discuss the correlation between controllability of complex networks and degree distribution index: power-law exponent and heterogeneity
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا