No Arabic abstract
Plane-wave electronic-structure predictions based upon orbital-dependent density-functional theory (OD-DFT) approximations, such as hybrid density-functional methods and self-interaction density-functional corrections, are severely affected by computational inaccuracies in evaluating electron interactions in the plane-wave representation. These errors arise from divergence singularities in the plane-wave summation of electrostatic and exchange interaction contributions. Auxiliary-function corrections are reciprocal-space countercharge corrections that cancel plane-wave singularities through the addition of an auxiliary function to the point-charge electrostatic kernel that enters into the expression of interaction terms. At variance with real-space countercharge corrections that are employed in the context of density-functional theory (DFT), reciprocal-space corrections are computationally inexpensive, making them suited to more demanding OD-DFT calculations. Nevertheless, there exists much freedom in the choice of auxiliary functions and various definitions result in different levels of performance in eliminating plane-wave inaccuracies. In this work, we derive exact point-charge auxiliary functions for the description of molecular structures of arbitrary translational symmetry, including the yet unaddressed one-dimensional case. In addition, we provide a critical assessment of different reciprocal-space countercharge corrections and demonstrate the improved accuracy of point-charge auxiliary functions in predicting the electronic levels and electrical response of conjugated polymers from plane-wave OD-DFT calculations.
Motivated by the recently proposed parallel orbital-updating approach in real space method, we propose a parallel orbital-updating based plane-wave basis method for electronic structure calculations, for solving the corresponding eigenvalue problems. In addition, we propose two new modified parallel orbital-updating methods. Compared to the traditional plane-wave methods, our methods allow for two-level parallelization, which is particularly interesting for large scale parallelization. Numerical experiments show that these new methods are more reliable and efficient for large scale calculations on modern supercomputers
The phonon and electronic properties, the Eliashberg function and the temperature dependence of resistance of electride Ca2N are investigated by the DFT-LDA plane-wave method. The phonon dispersion, the partial phonon density of states and the atomic eigenvectors of zero-center phonons are studied. The electronic band dispersion and partial density of states conclude that Ca2N is a metal and the Ca 3p, 4s and N 2p orbitals are hybridized. For the analysis of an electron - phonon interaction (EPI) and its contribution to resistance the Eliashberg function was calculated and a temperature dependence of resistance caused EPI was found. The present results are in good agreement with experiment data.
The group IV-VI compound SnSe, with an orthorhombic lattice structure, has recently attracted particular interest due to its unexpectedly low thermal conductivity and high power factor, showing great promise for thermoelectric applications. SnSe displays intriguing anisotropic properties due to the puckered low-symmetry in-plane lattice structure. Low-dimensional materials have potential advantages in improving the efficiency of thermoelectric conversion, due to the increased power factor and decreased thermal conductivity. A complete study of the optical and electrical anisotropies of SnSe nanostructures is a necessary prerequisite in taking advantage of the material properties for high performance devices. Here, we synthesize the single crystal SnSe nanoplates (NPs) by chemical vapor deposition. The angular dependence of the polarized Raman spectra of SnSe NPs shows anomalous anisotropic light-mater interaction. The angle-resolved charge transport of the SnSe NPs expresses a strong anisotropic conductivity behavior. These studies elucidate the anisotropic interactions which will be of use for future ultrathin SnSe in electronic, thermoelectric and optoelectronic devices.
A systemically theoretical study has been presented to explored the crystal structures and electronic characteristics of polycyclic aromatic hydrocarbons (PAHs), such as solid phenanthrene, picene, 1,2;8,9-dibenzopentacene, and 7-phenacenes, since these PAHs exhibited the superconductivity when potassium doping into. For tripotassium-doped phenanthrene and picene, we demonstrate the K atomic positions to fit the experimental lattice parameters, and analyze the distinction between the stablest configuration and the fitted experimental one. Based on the first-principles calculations, for the first time, we predict the possible crystal configurations of pristine and tripotassium-doped 1,2;8,9-dibenzopentacene and 7-phenacenes, respectively. For these four PAHs, the electronic structures after doping are investigated in details. The results show that the electronic characters near the Fermi level are high sensitive to structure. Because of the change of the benzene rings arrangement, the 1,2;8,9-dibenzopentacene exhibits visibly different band structures from other three PAHs. In these metallic PAHs, two bands cross the Fermi level which results in the complicated multiband feature of Fermi surfaces. Fascinatingly, we find that the electronic states of potassium contribute to the Fermi surfaces especially for K-3$d$ electrons, which improves a way to understand this superconductivity. As a result, we suggest that the rigid-band picture is invalidated due to the hybridization between K atoms and PAH molecules as well as the rearrangement and distortion of PAH molecules.
The PEO3:LiCF3SO3 polymer electrolyte has attracted significant research due to its enhanced stability at the lithium/polymer interface of high conductivity polymer batteries. Experimental studies have shown that, depending on the preparation conditions, both the PEO3:LiCF3SO3 crystalline complex and the PEO3:LiCF3SO3 amorphous phase can be formed. However, previous theoretical investigations focused on the short chain amorphous PEO3:LiCF3SO3 system. We report ab initio density-functional-theory calculations of crystalline PEO3:LiCF3SO3. The calculated results about the bonding configuration, electronic structures, and conductivity properties are in good agreement with the experimental measurements.