Do you want to publish a course? Click here

Forward particle productions at RHIC and the LHC from CGC within local rcBK evolution

186   0   0.0 ( 0 )
 Added by Hirotsugu Fujii
 Publication date 2011
  fields
and research's language is English




Ask ChatGPT about the research

In order to describe forward hadron productions in high-energy nuclear collisions, we propose a Monte-Carlo implementation of Dumitru-Hayashigaki-Jalilian-Marian formula with the unintegrated gluon distribution obtained numerically from the running-coupling BK equation. We discuss influence of initial conditions for the BK equation by comparing a model constrained by global fit of small-x HERA data and a newly proposed one from the running coupling MV model.



rate research

Read More

Charmonium production at heavy-ion colliders is considered within the comovers interaction model. The formalism is extended by including possible secondary J/psi production through recombination and an estimate of recombination effects is made with no free parameters involved. The comovers interaction model also includes a comprehensive treatment of initial-state nuclear effects, which are discussed in the context of such high energies. With these tools, the model properly describes the centrality and the rapidity dependence of experimental data at RHIC energy, $sqrt{s}$ = 200 GeV, for both Au+Au and Cu+Cu collisions. Predictions for LHC, $sqrt{s}$ = 5.5 TeV, are presented and the assumptions and extrapolations involved are discussed.
We present predictions on the total cross sections and on the ratio of the real part to the imaginary part of the elastic amplitude (rho parameter) for present and future pp and pbar p colliders, and on total cross sections for gamma p -> hadrons at cosmic-ray energies and for gamma gamma -> hadrons up to sqrt(s)=1 TeV. These predictions are based on a study of many possible analytic parametrisations and invoke the current hadronic dataset at t=0. The uncertainties on total cross sections, including the systematic theoretical errors, reach 1% at RHIC, 3% at the Tevatron, and 10% at the LHC, whereas those on the rho parameter are respectively 10%, 17%, and 26%.
104 - Yuncun He , Zi-Wei Lin 2020
We use the string melting version of a multi-phase transport (AMPT) model to study Cu+Au collisions at $sqrt{s_{NN}}=200$ GeV. The rapidity distributions of identified hadrons show asymmetric dependences on rapidity. In addition, elliptic and triangular flows at mid-rapidity from the AMPT model for pions, kaons, and protons agree reasonably with the experimental data up to $p_{T}sim1$ GeV$/c$. We then investigate the forward/backward asymmetry of $v_2$ and $v_3$. We find that these anisotropic flows are larger on the Au-going side than the Cu-going side, while the asymmetry tends to go away in very peripheral collisions. We also make predictions on transverse momentum spectra of identified hadrons and longitudinal decorrelations of charged particles, where the average decorrelation of elliptic flow in asymmetric Cu+Au collisions is found to be stronger than that in Au+Au collisions.
We evaluate drag and diffusion transport coefficients comparing a quasi-particle approximation with on-shell constituents of the QGP medium and a dynamical quasi-particles model with off-shell bulk medium at finite temperature T. We study the effects of the width $gamma$ of the particles of the bulk medium on the charm quark transport properties exploring the range where $gamma < M_{q,g}$. We find that off-shell effects are in general quite moderate and can induce a reduction of the drag coefficient at low momenta that disappear already at moderate momenta, $p gtrsim 2-3, rm GeV$. We also observe a moderate reduction of the breaking of the Fluctuation-Dissipation theorem (FDT) at finite momenta. Moreover, we have performed a first study of the dynamical evolution of HQ elastic energy loss in a bulk medium at fixed temperature extending the Boltzmann (BM) collision integral to include off-shell dynamics. A comparison among the Langevin dynamics, the BM collisional integral with on-shell and the BM extension to off-shell dynamics shows that the evolution of charm energy when off-shell effects are included remain quite similar to the case of the on-shell BM collision integral.
The interpretation of experimental results at RHIC and in the future also at LHC requires very reliable and realistic models. Considerable effort has been devoted to the development of such models during the past decade, many of them being heavily used in order to analyze data. It is the purpose of this paper to point out serious inconsistencies in the above-mentioned approaches. We will demonstrate that requiring theoretical self-consistency reduces the freedom in modeling high energy nuclear scattering enormously. We will introduce a fully self-consistent formulation of the multiple-scattering scheme in the framework of a Gribov-Regge type effective theory. In addition, we develop new computational techniques which allow for the first time a satisfactory solution of the problem in the sense that calculations of observable quantities can be done strictly within a self-consistent formalism.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا