Do you want to publish a course? Click here

AAMQS: a non-linear QCD description of new HERA data at small-x

133   0   0.0 ( 0 )
 Publication date 2011
  fields
and research's language is English




Ask ChatGPT about the research

We present a global analysis of available data on inclusive structure functions measured in electron-proton scattering at small values of Bjorken-x, including the latest data from the combined HERA analysis on reduced cross sections. Our approach relies on the dipole formulation of DIS together with the use of the non-linear running coupling BK equation for the description of the small-x dynamics. With the resulting parametrization we are able to describe the latest FL data measured by the H1 collaboration. Further, we discuss the kinematical domain where significant deviations from NLO-DGLAP should be expected and the ability of non-linnear physics to account for such deviations.



rate research

Read More

The very precise combined HERA data provides a testing ground in which the relevance of novel QCD regimes, other than the successful linear DGLAP evolution, in small-x inclusive DIS data can be ascertained. We present a study of the dependence of the AAMQS fits, based on the running coupling BK non-linear evolution equations (rcBK), on the fitted dataset. This allows for the identification of the kinematical region where rcBK accurately describes the data, and thus for the determination of its applicability boundary. We compare the rcBK results with NNLO DGLAP fits, obtained with the NNPDF methodology with analogous kinematical cuts. Further, we explore the impact on LHC phenomenology of applying stringent kinematical cuts to the low-x HERA data in a DGLAP fit.
The forthcoming p+Pb run at the LHC will provide crucial in formation on the initial state effects of heavy ion collisions and on the gluon saturation phenomena. In turn, most of the saturation inspired phenomenology in heavy ion collisions borrows substantial empiric information from the analysis of e+p data, where abundant high quality data on the small-x kinematic region is available. Indeed, the very precise combined HERA data provides a testing ground in which the relevance of novel QCD regimes, other than the successful linear DGLAP evolution, in small-x inclusive DIS data can be ascertained. We present a study of the dependence of the AAMQS fits, based on the running coupling BK non-linear evolution equations (rcBK), on the fitted dataset. This allows for the identification of the kinematical region where rcBK accurately describes the data, and thus for the determination of its applicability boundary. It also set important constraints to the saturation models used to model the early stages of heavy ion collisions. Finally we compare the rcBK results with NNLO DGLAP fits, obtained with the NNPDF methodology with analogous kinematical cuts. Further, we explore the impact on LHC phenomenology of applying stringent kinematical cuts to the low-x HERA data in a DGLAP fit.
249 - Zhiqing Zhang 2013
This talk covers three contributions from H1: Measurement of the inclusive e^pm p scattering cross section at high inelasticity y and of the structure function F_L, Determination of the integrated luminosity at HERA using elastic QED Compton events and Inclusive deep inelastic scattering at high Q2 with longitudinally polarized lepton beams at HERA. These are new measurements mainly based on the full HREA-II data but include also those from HERA-I in the combination whenever it is relevant. The main results of these measurements are briefly summarized here.
HERA data on diffractive DIS show deviations from twist 2 DGLAP predictions below $Q^2sim 5$ GeV$^2$ at low pomeron $xi$, which may reach up to 100%. These deviations are consistent with higher twists effects extracted from the saturation model. It is a first direct evidence for the higher twists in DIS. This finding affects determination of the diffractive parton densities that are used for the predictions at the LHC.
We emphasize that recently observed regularities in hadron interactions and deep-inelastic scattering are of preasymptotic nature and it is impossible to make conclusions on the true asymptotic behavior of observables without unitarization procedure. Unitarization is important and changes scattering picture drastically.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا