No Arabic abstract
We investigate the nature of the Mott-insulating phases of half-filled 2N-component fermionic cold atoms loaded into a one-dimensional optical lattice. By means of conformal field theory techniques and large-scale DMRG calculations, we show that the phase diagram strongly depends on the parity of $N$. First, we single out charged, spin-singlet, degrees of freedom, that carry a pseudo-spin ${cal S}=N/2$ allowing to formulate a Haldane conjecture: for attractive interactions, we establish the emergence of Haldane insulating phases when $N$ is even, whereas a metallic behavior is found when $N$ is odd. We point out that the $N=1,2$ cases do emph{not} have the generic properties of each family. The metallic phase for $N$ odd and larger than 1 has a quasi-long range singlet pairing ordering with an interesting edge-state structure. Moreover, the properties of the Haldane insulating phases with even $N$ further depend on the parity of N/2. In this respect, within the low-energy approach, we argue that the Haldane phases with N/2 even are not topologically protected but equivalent to a topologically trivial insulating phase and thus confirm the recent conjecture put forward by Pollmann {it et al.} [Pollmann {it et al.}, arXiv:0909.4059 (2009)].
A Haldane conjecture is revealed for spin-singlet charge modes in 2N-component fermionic cold atoms loaded into a one-dimensional optical lattice. By means of a low-energy approach and DMRG calculations, we show the emergence of gapless and gapped phases depending on the parity of $N$ for attractive interactions at half-filling. The analogue of the Haldane phase of the spin-1 Heisenberg chain is stabilized for N=2 with non-local string charge correlation, and pseudo-spin 1/2 edge states. At the heart of this even-odd behavior is the existence of a spin-singlet pseudo-spin $N/2$ operator which governs the low-energy properties of the model for attractive interactions and gives rise to the Haldane physics.
The physical properties of arbitrary half-integer spins F = N - 1/2 fermionic cold atoms loaded into a one-dimensional optical lattice are investigated by means of a conformal field theory approach. We show that for attractive interactions two different superfluid phases emerge for F ge 3/2: A BCS pairing phase, and a molecular superfluid phase which is formed from bound-states made of 2N fermions. In the low-energy approach, the competition between these instabilities and charge-density waves is described in terms of Z_N parafermionic degrees of freedom. The quantum phase transition for F=3/2,5/2 is universal and shown to belong to the Ising and three-state Potts universality classes respectively. For a filling of one atom per site, a Mott transition occurs and the nature of the possible Mott-insulating phases are determined.
The Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase, a superconducting state with non-zero total momentum Cooper pairs in a large magnetic field, was first predicted about 50 years ago, and since then became an important concept in many branches of physics. Despite intensive search in various materials, unambiguous experimental evidence for the FFLO phase is still lacking in experiments. In this paper, we show that both FF (uniform order parameter with plane-wave phase) and LO phase (spatially varying order parameter amplitude) can be observed using fermionic cold atoms in spin-orbit coupled optical lattices. The increasing spin-orbit coupling enhances the FF phase over the LO phase. The coexistence of superfluid and magnetic orders is also found in the normal BCS phase. The pairing mechanism for different phases is understood by visualizing superfluid pairing densities in different spin-orbit bands. The possibility of observing similar physics using spin-orbit coupled superconducting ultra-thin films is also discussed.
We study a simple model of N-component fermions with contact interactions which describes fermionic atoms with N=2F+1 hyperfine states loaded into a one-dimensional optical lattice. We show by means of analytical and numerical approaches that, for attractive interaction, a quasi-long-range molecular superfluid phase emerges at low density. In such a phase, the pairing instability is strongly suppressed and the leading instability is formed from bound-states made of N fermions. At small density, the molecular superfluid phase is generic and exists for a wide range of attractive contact interactions without an SU(N) symmetry between the hyperfine states.
A simple set of algebraic equations is derived for the exact low-temperature thermodynamics of one-dimensional multi-component strongly attractive fermionic atoms with enlarged SU(N) spin symmetry and Zeeman splitting. Universal multi-component Tomonaga-Luttinger liquid (TLL) phases are thus determined. For linear Zeeman splitting, the physics of the gapless phase at low temperatures belongs to the universality class of a two-component asymmetric TLL corresponding to spin-neutral N-atom composites and spin-(N-1)/2 single atoms. The equation of states is also obtained to open up the study of multi-component TLL phases in 1D systems of N-component Fermi gases with population imbalance.