Do you want to publish a course? Click here

Statistical distribution of the local purity in a large quantum system

76   0   0.0 ( 0 )
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

The local purity of large many-body quantum systems can be studied by following a statistical mechanical approach based on a random matrix model. Restricting the analysis to the case of global pure states, this method proved to be successful and a full characterization of the statistical properties of the local purity was obtained by computing the partition function of the problem. Here we generalize these techniques to the case of global mixed states. Since the computation of the partition function is far more challenging than in the pure case, we focus on the computation of the first moments of the local purity. Finally, we establish a connection with the theory of twirling maps in quantum channels.



rate research

Read More

The concentration and distribution of quantum entanglement is an essential ingredient in emerging quantum information technologies. Much theoretical and experimental effort has been expended in understanding how to distribute entanglement in one-dimensional networks. However, as experimental techniques in quantum communication develop, protocols for multi-dimensional systems become essential. Here, we focus on recent theoretical developments in protocols for distributing entanglement in regular and complex networks, with particular attention to percolation theory and network-based error correction.
145 - Xiaoqian Zhang 2017
In this paper, we mainly study the local distinguishable multipartite quantum states by local operations and classical communication (LOCC) in $m_1otimes m_2otimesldotsotimes m_n$ , where the quantum system $m_1$ belongs to Alice, $m_2$ belongs to Bob, ldots and $m_n$ belongs to Susan. We first present the pure tripartite distinguishable orthogonal quantum states by LOCC in $m_1otimes m_2otimes m_3$. With the conclusion in $m_1otimes m_2otimes m_3$, we prove distinguishability or indistinguishability of some quantum states. At last, we give the $n$-party distinguishable quantum states in $m_1otimes m_2otimescdotsotimes m_n$. Our study further reveals quantum nonlocality in multipartite high-dimensional.
41 - A. P. Pljonkin 2019
A typical structure of an auto-compensation system for quantum key distribution is given. The principle of operation of a fiber-optic system for the distribution of quantum keys with phase coding of photon states is described. The operation of the system in the synchronization mode and the formation of quantum keys was investigated. The process of detecting a time interval with an optical synchronization pulse is analyzed. The structural scheme of the experimental stand of the quantum-cryptographic network is given. Data are obtained that attest to the presence of a multiphoton signal during the transmission of sync pulses from the transceiver station to the coding and backward direction. The results of experimental studies are presented, which prove the existence of a vulnerability in the process of synchronization of the quantum key distribution system. It is shown that the use of a multiphoton optical pulse as a sync signal makes it possible for an attacker to unauthorized access to a quantum communication channel. The experimental results show that tapping a portion of the optical power from the quantum communication channel during the synchronization process allows an attacker to remain unnoticed while the quantum protocol is operating. Experimentally proved the possibility of introducing malfunctions into the operation of the quantum communication system at the stage of key formation, while remaining invisible for control means.
366 - Hari Krovi , Igor Devetak 2007
Local pure states are an important resource for quantum computing. The problem of distilling local pure states from mixed ones can be cast in an information theoretic paradigm. The bipartite version of this problem where local purity must be distilled from an arbitrary quantum state shared between two parties, Alice and Bob, is closely related to the problem of separating quantum and classical correlations in the state and in particular, to a measure of classical correlations called the one-way distillable common randomness. In Phys. Rev. A 71, 062303 (2005), the optimal rate of local purity distillation is derived when many copies of a bipartite quantum state are shared between Alice and Bob, and the parties are allowed unlimited use of a unidirectional dephasing channel. In the present paper, we extend this result to the setting in which the use of the channel is bounded. We demonstrate that in the case of a classical-quantum system, the expression for the local purity distilled is efficiently computable and provide examples with their tradeoff curves.
122 - Anindya Biswas , Aditi Sen De , 2013
Fidelity plays an important role in measuring distances between pairs of quantum states, of single as well as multiparty systems. Based on the concept of fidelity, we introduce a physical quantity, shared purity, for arbitrary pure or mixed quantum states of shared systems of an arbitrary number of parties in arbitrary dimensions. We find that it is different from quantum correlations. However, we prove that a maximal shared purity between two parties excludes any shared purity of these parties with a third party, thus ensuring its quantum nature. Moreover, we show that all generalized GHZ states are monogamous, while all generalized W states are non-monogamous with respect to this measure. We apply the quantity to investigate the quantum XY spin models, and observe that it can faithfully detect the quantum phase transition present in these models. We perform a finite-size scaling analysis and find the scaling exponent for this quantity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا