Interaction-induced magnetism at the ends of carbon nanotubes is studied theoretically, with a special focus on magnetic anisotropies. Spin-orbit coupling, generally weak in ordinary graphene, is strongly enhanced in nanotubes. In combination with Coulomb interactions, this enhanced spin-orbit coupling gives rise to a super-spin at the ends of carbon nanotubes with an XY anisotropy on the order of 10 mK. Furthermore, it is shown that this anisotropy can be enhanced by more than one order of magnitude via a partial suppression of the super-spin.