Do you want to publish a course? Click here

Very-high-energy gamma-ray emission from the direction of the Galactic globular cluster Terzan 5

164   0   0.0 ( 0 )
 Added by Wilfried Domainko
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

The H.E.S.S. very-high-energy (VHE, E > 0.1 TeV) gamma-ray telescope system has discovered a new source, HESS J1747-248. The measured integral flux is (1.2 +/- 0.3) times 10^-12 cm-2 s-1 above 440 GeV for a power-law photon spectral index of 2.5 +/- 0.3 stat +/- 0.2 sys. The VHE gamma-ray source is located in the close vicinity of the Galactic globular cluster Terzan 5 and extends beyond the H.E.S.S. point spread function (0.07 degree). The probability of a chance coincidence with Terzan 5 and an unrelated VHE source is quite low (~ 10^-4). With the largest population of identified millisecond pulsars (msPSRs), a very high core stellar density and the brightest GeV range flux as measured by Fermi-LAT, Terzan 5 stands out among Galactic globular clusters. The properties of the VHE source are briefly discussed in the context of potential emission mechanisms, notably in relation to msPSRs. Interpretation of the available data accommodates several possible origins for this VHE gamma-ray source, although none of them offers a satisfying explanation of its peculiar morphology.



rate research

Read More

Globular clusters are old stellar systems which exhibit very-high stellar densities in their cores. The globular cluster Terzan 5 is characterized by a high stellar encounter rate and hosts the largest detected population of millisecond pulsars. It also features bright GeV gamma-ray emission and extended X-ray radiation. However, no globular clusters have been detected in very-high-energy gamma rays (VHE, E> 100 GeV) so far. In order to investigate this possibility Terzan 5 has been observed with the H.E.S.S. telescope array in this energy band. The discovery of a source of VHE gamma rays from the direction of this globular cluster will be reported. The results of the VHE analysis and a multi-wavelength view of Terzan 5 will be presented in this contribution. No counterpart or model can fully explain the observed morphology of the detected VHE gamma-ray source.
145 - P. Eger , C. van Eldik 2013
Globular clusters (GCs) are established emitters of high-energy (HE, 100 MeV<E<100 GeV) gamma-ray radiation which could originate from the cumulative emission of the numerous millisecond pulsars (msPSRs) in the clusters cores or from inverse Compton (IC) scattering of relativistic leptons accelerated in the GC environment. GCs could also constitute a new class of sources in the very-high-energy (VHE, E>100 GeV) gamma-ray regime, judging from the recent detection of emission from the direction of Terzan 5 with the H.E.S.S. telescope array. To search for VHE gamma-ray sources associated with other GCs, and to put constraints on leptonic emission models, we systematically analyzed the observations towards 15 GCs taken with H.E.S.S. We searched for individual sources of VHE gamma-rays from each GC in our sample and also performed a stacking analysis combining the data from all GCs to investigate the hypothesis of a population of faint emitters. Assuming IC emission as the source of emission from Terzan 5, we calculated the expected gamma-ray flux for each of the 15 GCs, based on their number of millisecond pulsars, their optical brightness and the energy density of background photon fields. We did not detect significant emission from any of the 15 GCs. The obtained flux upper limits allow to rule out the simple IC/msPSR scaling model for NGC 6388 and NGC 7078. The upper limits derived from the stacking analyses are factors between 2 and 50 below the flux predicted by the simple leptonic model, depending on the assumed source extent and the dominant target photon fields. Therefore, Terzan 5 still remains exceptional among all GCs, as the VHE gamma-ray emission either arises from extra-ordinarily efficient leptonic processes, or from a recent catastrophic event, or is even unrelated to the GC itself.
Globular clusters (GCs) are established emitters of high-energy (HE, 100 MeV<E<100 GeV) gamma-ray radiation which could originate from the cumulative emission of the numerous millisecond pulsars (msPSRs) in the clusters cores or from inverse Compton (IC) scattering of relativistic leptons accelerated in the GC environment. These stellar clusters could also constitute a new class of sources in the very-high-energy (VHE, E>100 GeV) gamma-ray regime, judging from the recent detection of a signal from the direction of Terzan 5 with the H.E.S.S. telescope array. We searched for point-like and extended VHE gamma-ray emission from 15 GCs serendipitously covered by H.E.S.S observations and also performed a stacking analysis combining the data from all GCs to investigate the hypothesis of a population of faint emitters. Assuming IC emission as the origin of the VHE gamma-ray signal from the direction of Terzan 5, we calculated the expected gamma-ray flux from each of the 15 GCs, based on their number of millisecond pulsars, their optical brightness and the energy density of background photon fields. We did not detect significant VHE gamma-ray emission from any of the 15 GCs in either of the two analyses. Given the uncertainties related to the parameter determinations, the obtained flux upper limits allow to rule out the simple IC/msPSR scaling model for NGC 6388 and NGC 7078. The upper limits derived from the stacking analyses are factors between 2 and 50 below the flux predicted by the simple leptonic scaling model, depending on the assumed source extent and the dominant target photon fields. Therefore, Terzan 5 still remains exceptional among all GCs, as the VHE gamma-ray emission either arises from extra-ordinarily efficient leptonic processes, or from a recent catastrophic event, or is even unrelated to the GC itself.
Terzan 5 is a Galactic globular cluster exhibiting prominent X-ray and gamma-ray emission. Following the discovery of extended X- ray emission in this object, we explore here archival data at several wavelengths for other unexpected emission features in the vicinity of this globular cluster. Radio data from the Effelsberg 100 metre telescope show several extended structures near Terzan 5, albeit with large uncertainties in the flux estimates and no reliable radio spectral index. In particular, a radio source extending from the location of Terzan 5 to the north-west could result from long-term non-thermal electron production by the large population of milli-second pulsars in this globular cluster. Another prominent radio structure close to Terzan 5 may be explained by ionised material produced by a field O star. As for the diffuse X-ray emission found in Terzan 5, its extension appears to be limited to within 2.5 arcmin of the globular cluster and the available multi-wavelength data is compatible with an inverse Compton scenario but disfavours a non-thermal Bremsstrahlung origin.
151 - Arash Bahramian 2013
We report and study the outburst of a new transient X-ray binary (XRB) in Terzan 5, the third detected in this globular cluster, Swift J174805.3-244637 or Terzan 5 X-3. We find clear spectral hardening in Swift/XRT data during the outburst rise to the hard state, thanks to our early coverage (starting at L_X ~ 4x10^{34} ergs/s) of the outburst. This hardening appears to be due to the decline in relative strength of a soft thermal component from the surface of the neutron star (NS) during the rise. We identify a {Type I X-ray burst} in Swift/XRT data with a long (16 s) decay time, indicative of {hydrogen burning on the surface of the} NS. We use Swift/BAT, Maxi/GSC, Chandra/ACIS, and Swift/XRT data to study the spectral changes during the outburst, identifying a clear hard-to-soft state transition. We use a Chandra/ACIS observation during outburst to identify the transients position. Seven archival Chandra/ACIS observations show evidence for variations in Terzan 5 X-3s non-thermal component, but not the thermal component, during quiescence. The inferred long-term time-averaged mass accretion rate, from the quiescent thermal luminosity, suggests that if this outburst is typical and only slow cooling processes are active in the neutron star core, such outbursts should recur every ~10 years.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا