No Arabic abstract
Using e^+e^- collision data corresponding to 5.88M Y(3S) [25.9M psi(2S)] decays and acquired by the CLEO III [CLEO-c] detectors operating at CESR, we study the single-pion transitions from Y(3S) [psi(2S)] to the respective spin-singlet states h_{b[c]}. Utilizing only the momentum of suitably selected transition-pi^0 candidates, we obtain the upper limit B(Y(3S) -> pi^0 h_b) < 1.2times 10^{-3} at 90% confidence level, and measure B(psi(2S) -> pi^0 h_c) = (9.0+-1.5+-1.3)times 10^{-4}. Signal sensitivities are enhanced by excluding very asymmetric pi^0 -> gamma gamma candidates.
We study the decays of the J/psi and psi mesons to pi+pi-pi0 using data samples at both resonances collected with the BES III detector in 2009. We measure the corresponding branching fractions with unprecedented precision and provide mass spectra and Dalitz plots. The branching fraction for J/psi -> pi+pi-pi0 is determined to be (2.137 +- 0.004 (stat.) +0.058-0.056 (syst.) +0.027-0.026 (norm.))*10-2, and the branching fraction for psi -> pi+pi-pi0 is measured as (2.14 +- 0.03 (stat.) +0.08-0.07 (syst.) +0.09-0.08 (norm.))*10-4. The J/psi decay is found to be dominated by an intermediate rho(770) state, whereas the psi decay is dominated by di-pion masses around 2.2 GeV/c2, leading to strikingly different Dalitz distributions.
Using data samples collected with the BESIII detector at center-of-mass energies $sqrt{s} = 4.23, 4.26, 4.36,$ and $4.42$~rm{GeV}, we measure the branching fractions of $eta_cto K^+K^-pi^0$, $K^0_S K^{pm}pi^{mp}$, $2(pi^+pi^-pi^0)$, and $p bar{p}$, via the process $e^+e^-topi^+pi^-h_c$, $h_ctogammaeta_c$. The corresponding results are $(1.15pm0.12pm0.10)%$, $(2.60pm0.21pm0.20)%$, $(15.2pm1.8pm1.7)%$, and $(0.120pm0.026pm0.015)%$, respectively. Here the first uncertainties are statistical, and the second ones systematic. Additionally, the charged track multiplicity of $eta_c$ decays is measured for the first time.
We report measurements of the branching fractions and $CP$ asymmetries for $D_s^{+} rightarrow K^{+} eta $, $D_s^{+} rightarrow K^{+} pi^0 $, and $D_s^{+} rightarrow pi^{+} eta $ decays, and the branching fraction for $D_s^{+} rightarrow pi^{+} pi^0$. Our results are based on a data sample corresponding to an integrated luminosity of 921 fb$^{-1}$ collected by the Belle detector at the KEKB $e^+e^-$ asymmetric-energy collider. Our measurements of $CP$ asymmetries in these decays are the most precise to-date; no evidence for $CP$ violation is found.
A study of B+ to J/psi pi+ and B+ to psi(2S) pi+ decays is performed with data corresponding to 0.37 fb-1 of proton-proton collisions at sqrt(s)=7 TeV. Their branching fractions are found to be B(B+ to J/psi pi+) = (3.88 +- 0.11 +- 0.15) x 10^{-5} and B(B+ to psi(2S) pi+) = (2.52 +- 0.26 +- 0.15) x 10^{-5}, where the first uncertainty is related to the statistical size of the sample and the second quantifies systematic effects. The measured CP asymmetries in these modes are ACP(J/psi pi) = 0.005 +- 0.027 +- 0.011 and ACP(psi(2S) pi) = 0.048 +- 0.090 +- 0.011 with no evidence of direct CP violation seen.
The decays $ Lambda_b^0 to psi(2S)pK^-$ and $ Lambda_b^0 to J/psi pi^+ pi^- pK^-$ are observed in a data sample corresponding to an integrated luminosity of 3fb$^{-1}$, collected in proton-proton collisions at 7 and 8TeV centre-of-mass energies by the LHCb detector. The $psi(2S)$ mesons are reconstructed through the decay modes $psi(2S)tomu^+mu^-$ and $psi(2S)to J/psipi^+pi^-$. The branching fractions relative to that of $ Lambda_b^0 to J/psi pK^-$ are measured to be begin{eqnarray*} frac{mathcal{B}(Lambda_b^0 to psi(2S) pK^-)} {mathcal{B}(Lambda_b^0 to J/psi pK^-)} & = & (20.70pm 0.76pm 0.46pm 0.37)times10^{-2} ,, frac{mathcal{B}(Lambda_b^0 to J/psi pi^+ pi^- pK^-)} {mathcal{B}(Lambda_b^0 to J/psi pK^-)} & = & (20.86pm 0.96pm 1.34)times10^{-2} ,, end{eqnarray*} where the first uncertainties are statistical, the second are systematic and the third is related to the knowledge of $J/psi$ and $psi(2S)$ branching fractions. The mass of the $Lambda_b^0$ baryon is measured to be $$ M(Lambda_b^0) = 5619.65 pm 0.17 pm 0.17mathrm{MeV}/c^2,$$ where the uncertainties are statistical and systematic.