Do you want to publish a course? Click here

3-D Photoionization Structure and Distances of Planetary Nebulae IV. NGC 40

122   0   0.0 ( 0 )
 Added by Hektor Monteiro
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

Continuing our series of papers on the 3-D structure and accurate distances of Planetary Nebulae (PNe), we present here the results obtained for the planetary nebula NGC,40. Using data from different sources and wavelengths, we construct 3-D photoionization models and derive the physical quantitities of the ionizing source and nebular gas. The procedure, discussed in detail in the previous papers, consists of the use of 3-D photoionization codes constrained by observational data to derive the three-dimensional nebular structure, physical and chemical characteristics and ionizing star parameters of the objects by simultaneously fitting the integrated line intensities, the density map, the temperature map, and the observed morphologies in different emission lines. For this particular case we combined hydrodynamical simulations with the photoionization scheme in order to obtain self-consistent distributions of density and velocity of the nebular material. Combining the velocity field with the emission line cubes we also obtained the synthetic position-velocity plots that are compared to the observations. Finally, using theoretical evolutionary tracks of intermediate and low mass stars, we derive the mass and age of the central star of NGC,40 as $(0.567 pm 0.06)$M$_{odot}$ and $(5810 pm 600)$yrs, respectively. The distance obtained from the fitting procedure was $(1150 pm 120)$pc.



rate research

Read More

157 - Christophe Morisset 2016
The understanding of astronomical nebulae is based on observational data (images, spectra, 3D data-cubes) and theoretical models. In this review, I present my very biased view on photoionization modeling of planetary nebulae, focusing on 1D multi-component models, on 3D models and on big database of models.
458 - D. Schonberner , M. Steffen 2019
Individual distances to planetary nebulae are of the utmost relevance for our understanding of post-asymptotic giant-branch evolution because they allow a precise determination of stellar and nebular properties. Also, objects with individual distances serve as calibrators for the so-called statistical distances based on secondary nebular properties. With independently known distances, it is possible to check empirically our understanding of the formation and evolution of planetary nebulae as suggested by existing hydrodynamical simulations. We compared the expansion parallaxes that have recently been determined for a number of planetary nebulae with the trigonometric parallaxes provided by the Gaia Data Release 2. Except for two out of 11 nebulae, we found good agreement between the expansion and the Gaia trigonometric parallaxes without any systematic trend with distance. Therefore, the Gaia measurements also prove that the correction factors necessary to convert proper motions of shocks into Doppler velocities cannot be ignored. Rather, the size of these correction factors and their evolution with time as predicted by 1-D hydrodynamical models of planetary nebulae is basically validated. These correction factors are generally greater than unity and are different for the outer shell and the inner bright rim of a planetary nebula. The Gaia measurements also confirm earlier findings that spectroscopic methods often lead to an overestimation of the distance. They also show that even modelling of the entire system of star and nebula by means of sophisticated photoionization modeling may not always provide reliable results. The Gaia measurements confirm the basic correctness of the present radiation-hydrodynamics models, which predict that both the shell and the rim of a planetary nebula are two independently expanding entities.
The determination of reliable distances to Planetary Nebulae (PNe) is one of the major limitations in the study of this class of objects in the Galaxy. The availability of new photometric surveys such as IPHAS covering large portions of the sky gives us the opportunity to apply the extinction method to determine distances of a large number of objects. The technique is applied to a sample of 137 PNe located between -5 and 5 degrees in Galactic latitude, and between 29.52 and 215.49 degrees in longitude. The characteristics of the distance-extinction method and the main sources of errors are carefully discussed. The data on the extinction of the PNe available in the literature, complemented by new observations, allow us to determine extinction distances for 70 PNe. A comparison with statistical distance scales from different authors is presented.
161 - Richard A. Shaw 2011
A revival over the past two decades in planetary nebula (PN) morphological studies springs from a combination of factors, including the advent of wide-area, high dynamic range detectors; the growing archives of high resolution images from the X-ray to the sub-mm; and the advent of sophisticated models of the co-evolution of PNe and their central stars. Yet the story of PN formation from their immediate precursors, the AGB stars, is not yet fully written. PN morphology continues to inspire, provide context for physical interpretation, and serve as an ultimate standard of comparison for many investigations in this area of astrophysics. After a brief review of the remarkable successes of PN morphology, I summarize how this tool has been employed over the last half-decade to advance our understanding of PNe.
We analysed UV FUSE, IUE, and HST/STIS spectra of five of the hottest [WCE]-type central stars of planetary nebulae: NGC 2867, NGC 5189, NGC 6905, Pb 6, and Sand 3. The analysis leveraged on our grid of CMFGEN synthetic spectra, which covers the parameter regime of hydrogen deficient central stars of planetary nebulae and allows a uniform and systematic study of the stellar spectra. The stellar atmosphere models calculated by us include many elements and ionic species neglected in previous analyses, which allowed us to improve the fits to the observed spectra considerably and provided an additional diagnostic line: the Ne VII $lambda$ 973 $mathrm{AA}$, which had not been modelled in [WCE] spectra and which presents, in these stars, a strong P-Cygni profile. We report newly derived photospheric and wind parameters and elemental abundances. The central stars of NGC 2867, NGC 5189, and Pb 6 had their temperatures revised upward in comparison with previous investigations and we found the carbon to helium mass ratio of the sample objects to span a wide range of values, 0.42$leq$C:He$leq$1.96. Modelling of the Ne VII $lambda$ 973 $mathrm{AA}$ P-Cygni profile indicated strong neon overabundances for the central stars of NGC 2867, NGC 5189, NGC 6905, and Pb 6, with Ne mass fractions between 0.01 and 0.04. Nitrogen abundances derived by us for the central stars of NGC 5189, Pb 6, and Sand 3 are higher than previous determinations by factors of 3, 10, and 14, respectively.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا