Do you want to publish a course? Click here

X-ray Stripes in Tychos Supernova Remant: Synchrotron Footprints of a Nonlinear Cosmic Ray-driven Instability

96   0   0.0 ( 0 )
 Added by Bykov Andrei M
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

High-resolution Chandra observations of Tychos SNR have revealed several sets of quasi-steady, high-emissivity, nearly-parallel X-ray stripes in some localized regions of the SNR. These stripes are most likely the result of cosmic-ray (CR) generated magnetic turbulence at the SNR blast wave. However, for the amazingly regular pattern of these stripes to appear requires the simultaneous action of a number of shock-plasma phenomena and is not predicted by most models of magnetic field amplification. A consistent explanation of these stripes yields information on the complex nonlinear plasma processes connecting efficient CR acceleration and magnetic field fluctuations in strong collisionless shocks. The nonlinear diffusive shock acceleration (NL-DSA) model described here, which includes magnetic field amplification from a cosmic-ray current driven instability, does predict stripes consistent with the synchrotron emission observations of Tychos SNR. We argue that the local ambient mean magnetic field geometry determines the orientation of the stripes and therefore it can be reconstructed with the high resolution X-ray imaging. The estimated maximum energy of the CR protons responsible for the stripes is $sim 10^{15}$,eV. Furthermore, the model predicts that a specific X-ray polarization pattern, with a polarized fraction ~ 50%, accompanies the stripes, which can be tested with future X-ray polarimeter missions.



rate research

Read More

The synchrotron X-ray stripes discovered in Tychos supernova remnant (SNR) have been attracting attention since they may be evidence for proton acceleration up to PeV. We analyzed Chandra data taken in 2003, 2007, 2009, and 2015 for imaging and spectroscopy of the stripes in the southwestern region of the SNR. Comparing images obtained at different epochs, we find that time variability of synchrotron X-rays is not limited to two structures previously reported but is more common in the region. Spectral analysis of nine bright stripes reveals not only their time variabilities but also a strong anti-correlation between the surface brightness and photon indices. The spectra of the nine stripes have photon indices of Gamma = 2.1--2.6 and are significantly harder than those of the outer rim of the SNR in the same region with Gamma = 2.7--2.9. Based on these findings, we indicate that the magnetic field is substantially amplified, and suggest that particle acceleration through a stochastic process may be at work in the stripes.
Analyzing Chandra data of Tychos supernova remnant (SNR) taken in 2000, 2003, 2007, 2009, and 2015, we search for time variable features of synchrotron X-rays in the southwestern part of the SNR, where stripe structures of hard X-ray emission were previous found. By comparing X-ray images obtained at each epoch, we discover a knot-like structure in the northernmost part of the stripe region became brighter particularly in 2015. We also find a bright filamentary structure gradually became fainter and narrower as it moved outward. Our spectral analysis reveal that not only the nonthermal X-ray flux but also the photon indices of the knot-like structure change from year to year. During the period from 2000 to 2015, the small knot shows brightening of $sim 70%$ and hardening of $Delta Gamma sim 0.45$. The time variability can be explained if the magnetic field is amplified to $sim 100~mathrm{mu G}$ and/or if magnetic turbulence significantly changes with time.
139 - Satoru Katsuda 2010
We present X-ray proper-motion measurements of the forward shock and reverse-shocked ejecta in Tychos supernova remnant, based on three sets of archival Chandra data taken in 2000, 2003, and 2007. We find that the proper motion of the edge of the remnant (i.e., the forward shock and protruding ejecta knots) varies from 0.20 yr^{-1} (expansion index m=0.33, where R = t^m) to 0.40 yr^{-1} (m=0.65) with azimuthal angle in 2000-2007 measurements, and 0.14 yr^{-1} (m=0.26) to 0.40 yr^{-1} (m=0.65) in 2003-2007 measurements. The azimuthal variation of the proper motion and the average expansion index of ~0.5 are consistent with those derived from radio observations. We also find proper motion and expansion index of the reverse-shocked ejecta to be 0.21-0.31 yr^{-1} and 0.43-0.64, respectively. From a comparison of the measured m-value with Type Ia supernova evolutionary models, we find a pre-shock ambient density around the remnant of <~0.2 cm^{-3}.
We report on the results from H{alpha} imaging observations of the eastern limb of Tychos supernova remnant (SN1572) using the Wide Field Planetary Camera 2 on the Hubble Space Telescope. We resolve the detailed structure of the fast, collisionless shock wave into a delicate structure of nearly edge-on filaments. We find a gradual increase of H{alpha} intensity just ahead of the shock front, which we interpret as emission from the thin (~1) shock precursor. We find that a significant amount of the H{alpha} emission comes from the precursor and that this could affect the amount of temperature equilibration derived from the observed flux ratio of the broad and narrow H{alpha} components. The observed H{alpha} emission profiles are fit using simple precursor models, and we discuss the relevant parameters. We suggest that the precursor is likely due to cosmic rays and discuss the efficiency of cosmic-ray acceleration at this position.
Synchrotron X-ray emission components were recently detected in many young supernova remnants (SNRs). There is even an emerging class - SN1006, RXJ1713.72-3946, Vela Jr, and others - that is dominated by non-thermal emission in X-rays, also probably of synchrotron origin. Such emission results from electrons/positrons accelerated well above TeV energies in the spectral cut-off regime. In the case of diffusive shock acceleration, which is the most promising acceleration mechanism in SNRs, very strong magnetic fluctuations with amplitudes well above the mean magnetic field must be present. Starting from such a fluctuating field, we have simulated images of polarized X-ray emission of SNR shells and show that these are highly clumpy with high polarizations up to 50%. Another distinct characteristic of this emission is the strong intermittency, resulting from the fluctuating field amplifications. The details of this twinkling polarized X-ray emission of SNRs depend strongly on the magnetic-field fluctuation spectra, providing a potentially sensitive diagnostic tool. We demonstrate that the predicted characteristics can be studied with instruments that are currently being considered. These can give unique information on magnetic-field characteristics and high-energy particle acceleration in SNRs.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا