Do you want to publish a course? Click here

Final Analysis and Results of the Phase II SIMPLE Dark Matter Search

143   0   0.0 ( 0 )
 Added by Tom Girard
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the final results of the Phase II SIMPLE measurements, comprising two run stages of 15 superheated droplet detectors each, the second stage including an improved neutron shielding. The analyses includes a refined signal analysis, and revised nucleation efficiency based on reanalysis of previously-reported monochromatic neutron irradiations. The combined results yield a contour minimum of sigma_{p} = 4.2 x 10^-3 pb at 35 GeV/c^2 on the spin-dependent sector of WIMP-proton interactions, the most restrictive to date from a direct search experiment and overlapping for the first time results previously obtained only indirectly. In the spin-independent sector, a minimum of 3.6 x 10^-6 pb at 35 GeV/c^2 is achieved, with the exclusion contour challenging the recent CoGeNT region of current interest.



rate research

Read More

We report results of a 14.1 kgd measurement with 15 superheated droplet detectors of total active mass 0.208 kg, comprising the first stage of a 30 kgd Phase II experiment. In combination with the results of the neutron-spin sensitive XENON10 experiment, these results yield a limit of |a_p| < 0.32 for M_W = 50 GeV/c2 on the spin-dependent sector of weakly interacting massive particle-nucleus interactions with a 50% reduction in the previously allowed region of the phase space formerly defined by XENON, KIMS and PICASSO. In the spin-independent sector, a limit of 2.3x10-5 pb at M_W = 45 GeV/c2 is obtained.
We report the dark matter search results obtained using the full 132 ton$cdot$day exposure of the PandaX-II experiment, including all data from March 2016 to August 2018. No significant excess of events is identified above the expected background. Upper limits are set on the spin-independent dark matter-nucleon interactions. The lowest 90% confidence level exclusion on the spin-independent cross section is $2.2times 10^{-46}$ cm$^2$ at a WIMP mass of 30 GeV/$c^2$.
Phase II of SIMPLE (Superheated Instrument for Massive ParticLe Experiments) searched for astroparticle dark matter using superheated liquid C$_{2}$ClF$_{5}$ droplet detectors. Each droplet generally requires an energy deposition with linear energy transfer (LET) $gtrsim$ 150 keV/$mu$m for a liquid-to-gas phase transition, providing an intrinsic rejection against minimum ionizing particles of order 10$^{-10}$, and reducing the backgrounds to primarily $alpha$ and neutron-induced recoil events. The droplet phase transition generates a millimetric-sized gas bubble which is recorded by acoustic means. We describe the SIMPLE detectors, their acoustic instrumentation, and the characterizations, signal analysis and data selection which yield a particle-induced, true nucleation event detection efficiency of better than 97% at a 95% C.L. The recoil-$alpha$ event discrimination, determined using detectors first irradiated with neutrons and then doped with alpha emitters, provides a recoil identification of better than 99%; it differs from those of COUPP and PICASSO primarily as a result of their different liquids with lower critical LETs. The science measurements, comprising two shielded arrays of fifteen detectors each and a total exposure of 27.77 kgd, are detailed. Removal of the 1.94 kgd Stage 1 installation period data, which had previously been mistakenly included in the data, reduces the science exposure from 20.18 to 18.24 kgd and provides new contour minima of $sigma_{p}$ = 4.3 $times$ 10$^{-3}$ pb at 35 GeV/c$^{2}$ in the spin-dependent sector of WIMP-proton interactions and $sigma_{N}$ = 3.6 $times$ 10$^{-6}$ pb at 35 GeV/c$^{2}$ in the spin-independent sector. These results are examined with respect to the fluorine spin and halo parameters used in the previous data analysis.
We report a new search of weakly interacting massive particles (WIMPs) using the combined low background data sets in 2016 and 2017 from the PandaX-II experiment in China. The latest data set contains a new exposure of 77.1 live day, with the background reduced to a level of 0.8$times10^{-3}$ evt/kg/day, improved by a factor of 2.5 in comparison to the previous run in 2016. No excess events were found above the expected background. With a total exposure of 5.4$times10^4$ kg day, the most stringent upper limit on spin-independent WIMP-nucleon cross section was set for a WIMP with mass larger than 100 GeV/c$^2$, with the lowest exclusion at 8.6$times10^{-47}$ cm$^2$ at 40 GeV/c$^2$.
We report an improved SIMPLE experiment comprising four superheated droplet detectors with a total exposure of 0.42 kgd. The result yields ~ factor 10 improvement in the previously-reported results, and -- despite the low exposure -- is seen to provide restrictions on the allowed phase space of spin-dependent coupling strengths almost equivalent to those from the significantly larger exposure NAIADCDMS/ZEPLIN searches.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا