Probing the Role of Magnetic-Field Variations in NOAA AR 8038 in Producing Solar Flare and CME on 12 May 1997


Abstract in English

We carried out a multi-wavelength study of a CME and a medium-size 1B/C1.3 flare occurring on 12 May 1997. We present the investigation of magnetic-field variations in the NOAA Active Region 8038 which was observed on the Sun during 7--16 May 1997. Analyses of H{alpha} filtergrams and MDI/SOHO magnetograms revealed continual but discrete surge activity, and emergence and cancellation of flux in this active region. The movie of these magnetograms revealed two important results that the major opposite polarities of pre-existing region as well as in the emerging flux region (EFR) were approaching towards each other and moving magnetic features (MMF) were ejecting out from the major north polarity at a quasi-periodicity of about ten hrs during 10--13 May 1997. These activities were probably caused by the magnetic reconnection in the lower atmosphere driven by photospheric convergence motions, which were evident in magnetograms. The magnetic field variations such as flux, gradient, and sunspot rotation revealed that free energy was slowly being stored in the corona. The slow low-layer magnetic reconnection may be responsible for this storage and the formation of a sigmoidal core field or a flux rope leading to the eventual eruption. The occurrence of EUV brightenings in the sigmoidal core field prior to the rise of a flux rope suggests that the eruption was triggered by the inner tether-cutting reconnection, but not the external breakout reconnection. An impulsive acceleration revealed from fast separation of the H{alpha} ribbons of the first 150 seconds suggests the CME accelerated in the inner corona, which is consistent with the temporal profile of the reconnection electric field. In conclusion, we propose a qualitative model in view of framework of a solar eruption involving, mass ejections, filament eruption, CME, and subsequent flare.

Download