Do you want to publish a course? Click here

Surface Scattering via Bulk Continuum States in the 3D Topological Insulator Bi$_{2}$Se$_{3}$

712   0   0.0 ( 0 )
 Added by Akio Kimura
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have performed scanning tunneling microscopy and differential tunneling conductance ($dI/dV$) mapping for the surface of the three dimensional topological insulator Bi$_{2}$Se$_{3}$. The fast Fourier transformation applied to the $dI/dV$ image shows an electron interference pattern near Dirac node despite the general belief that the backscattering is well suppressed in the bulk energy gap region. The comparison of the present experimental result with theoretical surface and bulk band structures shows that the electron interference occurs through the scattering between the surface states near the Dirac node and the bulk continuum states.



rate research

Read More

Crystalline symmetries have played a central role in the identification of topological materials. The use of symmetry indicators and band representations have enabled a classification scheme for crystalline topological materials, leading to large scale topological materials discovery. In this work we address whether amorphous topological materials, which lie beyond this classification due to the lack of long-range structural order, exist in the solid state. We study amorphous Bi$_2$Se$_3$ thin films, which show a metallic behavior and an increased bulk resistance. The observed low field magnetoresistance due to weak antilocalization demonstrates a significant number of two dimensional surface conduction channels. Our angle-resolved photoemission spectroscopy data is consistent with a dispersive two-dimensional surface state that crosses the bulk gap. Spin resolved photoemission spectroscopy shows this state has an anti-symmetric spin texture resembling that of the surface state of crystalline Bi$_2$Se$_3$. These experimental results are consistent with theoretical photoemission spectra obtained with an amorphous tight-binding model that utilizes a realistic amorphous structure. This discovery of amorphous materials with topological properties uncovers an overlooked subset of topological matter outside the current classification scheme, enabling a new route to discover materials that can enhance the development of scalable topological devices.
We theoretically investigate tunneling magnetoresistance (TMR) devices, which are probing the spin-momentum coupled nature of surface states of the three-dimensional topological insulator Bi$_{2}$Se$_{3}$. Theoretical calculations are performed based on a realistic tight-binding model for Bi$_{2}$Se$_{3}$. We study both three dimensional devices, which exploit the surface states of Bi$_{2}$Se$_{3}$, as well as two-dimensional devices, which exploit the edge states of thin Bi$_{2}$Se$_{3}$ strips. We demonstrate that the material properties of Bi$_{2}$Se$_{3}$ allow a TMR ratio at room temperature of the order of 1000%. Analytical formulas are derived that allow a quick estimate of the achievable TMR ratio in these devices. The devices can be used to measure the spin polarization of the topological surface states as an alternative to spin-ARPES. Unlike TMR devices based on magnetic tunnel junctions the present devices avoid the use of a second ferromagnetic electrode whose magnetization needs to be pinned.
214 - K. Miyamoto , A. Kimura , T. Okuda 2012
Helical spin textures with the marked spin polarizations of topological surface states have been firstly unveiled by the state-of-the-art spin- and angle-resolved photoemission spectroscopy for two promising topological insulators Bi$_2$Te$_2$Se and Bi$_2$Se$_2$Te. The highly spin-polarized natures are found to be persistent across the Dirac point in both compounds. This novel finding paves a pathway to extending their utilization of topological surface state for future spintronic applications.
Using magneto-infrared spectroscopy, we have explored the charge dynamics of (Bi,Sb)$_2$Te$_3$ thin films on InP substrates. From the magneto-transmission data we extracted three distinct cyclotron resonance (CR) energies that are all apparent in the broad band Faraday rotation (FR) spectra. This comprehensive FR-CR data set has allowed us to isolate the response of the bulk states from the intrinsic surface states associated with both the top and bottom surfaces of the film. The FR data uncovered that electron- and hole-type Dirac fermions reside on opposite surfaces of our films, which paves the way for observing many exotic quantum phenomena in topological insulators.
159 - M. Ye , S. V. Eremeev , K. Kuroda 2011
We studied the Ag-intercalated 3D topological insulator Bi$_{2}$Se$_{3}$ by scanning tunneling microscopy/spectroscopy and angle-resolved photoemission spectroscopy, combined with a first principles calculations. We demonstrate that silver atoms deposited on the surface of Bi$_{2}$Se$_{3}$ are intercalated between the quintuple layer (QL) units of the crystal, causing a expansion of the van der Waals gaps and the detachment of topmost QLs from the bulk crystal. This leads to a relocation (in the real space) of the the topological state beneath the detached quintuple layers, accompanied by the emergence of parabolic and M-shaped trivial bands localized above the relocated topological states. These novel findings open a pathway to the engineering of Dirac fermions shielded from the ambient contamination and may facilitate the realization of fault-tolerant quantum devices.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا