Do you want to publish a course? Click here

Propagation of Localization Optimal Entropy Production and Convergence rates for the Central Limit Theorem

239   0   0.0 ( 0 )
 Added by Avy Soffer
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We prove for the rescaled convolution map $fto fcircledast f$ propagation of polynomial, exponential and gaussian localization. The gaussian localization is then used to prove an optimal bound on the rate of entropy production by this map. As an application we prove the convergence of the CLT to be at the optimal rate $1/sqrt{n}$ in the entropy (and $L^1$) sense, for distributions with finite 4th moment.



rate research

Read More

Under the Kolmogorov--Smirnov metric, an upper bound on the rate of convergence to the Gaussian distribution is obtained for linear statistics of the matrix ensembles in the case of the Gaussian, Laguerre, and Jacobi weights. The main lemma gives an estimate for the characteristic functions of the linear statistics; this estimate is uniform over the growing interval. The proof of the lemma relies on the Riemann--Hilbert approach.
We consider a class of interacting particle systems with values in $[0,8)^{zd}$, of which the binary contact path process is an example. For $d ge 3$ and under a certain square integrability condition on the total number of the particles, we prove a central limit theorem for the density of the particles, together with upper bounds for the density of the most populated site and the replica overlap.
A strengthened version of the central limit theorem for discrete random variables is established, relying only on information-theoretic tools and elementary arguments. It is shown that the relative entropy between the standardised sum of $n$ independent and identically distributed lattice random variables and an appropriately discretised Gaussian, vanishes as $ntoinfty$.
324 - Nobuo Yoshida 2007
We consider branching random walks in $d$-dimensional integer lattice with time-space i.i.d. offspring distributions. When $d ge 3$ and the fluctuation of the environment is well moderated by the random walk, we prove a central limit theorem for the density of the population, together with upper bounds for the density of the most populated site and the replica overlap. We also discuss the phase transition of this model in connection with directed polymers in random environment.
We define a multi-group version of the mean-field spin model, also called Curie-Weiss model. It is known that, in the high temperature regime of this model, a central limit theorem holds for the vector of suitably scaled group magnetisations, that is the sum of spins belonging to each group. In this article, we prove a local central limit theorem for the group magnetisations in the high temperature regime.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا