Do you want to publish a course? Click here

Resolved optical-infrared SEDs of galaxies: universal relations and their break-down on local scales

93   0   0.0 ( 0 )
 Added by Stefano Zibetti
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

A large body of evidence has demonstrated that the global rest-frame optical and IR colours of galaxies correlate well with each other, as well as with other galactic properties such as surface brightness and morphology. However the processes that lead to the observed correlations are contrary; the stellar light that contributes to the optical is readily absorbed by dust which emits in the IR. Thus on small scales we expect these correlations to break down. We examine seven nearby galaxies ranging from early- to late-types, on a pixel-by-pixel basis and we demonstrate that there is disconnect between the optical and IR when normalized to the near-IR (H-band). We can decompose this disconnect into two distinct components through a Principal Component Analysis of the H-band normalized SED of the pixels: one mainly correlated with variations in the IR, the other correlated with variations in the optical. By mapping these two components it is clear they arise from distinct spatial regions. The IR dominated component is strongly associated with the specific star-formation rate, while the optical-dominated component is broadly associated with the stellar mass density. However, when the pixels of all galaxies are compared, the well known optical-IR colour correlations return, demonstrating that the variance observed within galaxies is around a mean which follows the well-known trend. We also examine the extremely strong correlations between the IRAC-NIR colours and demonstrate that they are tight enough to use a single IRAC-NIR colour (i.e. 8mum-H) to determine the fluxes in the other IRAC bands. These correlations arise from the differing contribution of stellar light and dust to the IRAC bands, enabling us to determine pure stellar colours for these bands, but still demonstrating the need for dust (or stellar) corrections in these bands when being used as stellar (dust) tracers.



rate research

Read More

We present a simple, largely empirical but physically motivated model, which is designed to interpret consistently multi-wavelength observations from large samples of galaxies in terms of physical parameters, such as star formation rate, stellar mass and dust content. Our model is both simple and versatile enough to allow the derivation of statistical constraints on the star formation histories and dust contents of large samples of galaxies using a wide range of ultraviolet, optical and infrared observations. We illustrate this by deriving median-likelihood estimates of a set of physical parameters describing the stellar and dust contents of local star-forming galaxies from the Spitzer Infrared Nearby Galaxy Sample (SINGS) and from a newly-matched sample of SDSS galaxies observed with GALEX, 2MASS, and IRAS. The model reproduces well the observed spectral energy distributions of these galaxies across the entire wavelength range from the far-ultraviolet to the far-infrared. We find important correlations between the physical parameters of galaxies which are useful to investigate the star formation activity and dust properties of galaxies. Our model can be straightforwardly applied to interpret observed ultraviolet-to-infrared spectral energy distributions (SEDs) from any galaxy sample.
Luminous Infrared (IR) Galaxies (LIRGs) are an important cosmological class of galaxies as they are the main contributors to the co-moving star formation rate density of the universe at z=1. In this paper we present a GTO Spitzer IRS program aimed to obtain spectral mapping of a sample of 14 local (d<76Mpc) LIRGs. The data cubes map, at least, the central 20arcsec x 20arcsec to 30arcsec x 30arcsec regions of the galaxies, and use all four IRS modules covering the full 5-38micron spectral range. The final goal of this project is to characterize fully the mid-IR properties of local LIRGs as a first step to understanding their more distant counterparts. In this paper we present the first results of this GTO program. The IRS spectral mapping data allow us to build spectral maps of the bright mid-IR emission lines (e.g., [NeII], [NeIII], [SIII], H_2), continuum, the 6.2 and 11.3micron PAH features, and the 9.7micron silicate feature, as well as to extract 1D spectra for regions of interest in each galaxy. The IRS data are used to obtain spatially resolved measurements of the extinction using the 9.7micron silicate feature, and to trace star forming regions using the neon lines and the PAH features. We also investigate a number of AGN indicators, including the presence of high excitation emission lines and a strong dust continuum emission at around 6micron. We finally use the integrated Spitzer/IRS spectra as templates of local LIRGs. We discuss several possible uses for these templates, including the calibration of the star formation rate of IR-bright galaxies at high redshift. We also predict the intensities of the brightest mid-IR emission lines for LIRGs as a function of redshift, and compare them with the expected sensitivities of future space IR missions.
[Abridged] We present ground-based MDM V-band and Spitzer/IRAC 3.6um-band photometric observations of the 72 representative galaxies of the SAURON Survey. In combination with the SAURON stellar velocity dispersion measured within an effective radius (se), this allows us to explore the location of our galaxies in the main scaling relations. We investigate the dependence of these relations on our recent kinematical classification of early-type galaxies (i.e. Slow/Fast Rotators) and the stellar populations. Slow Rotator and Fast Rotator E/S0 galaxies do not populate distinct locations in the scaling relations, although Slow Rotators display a smaller intrinsic scatter. Surprisingly, extremely young objects do not display the bluest (V-[3.6]) colours in our sample, as is usually the case in optical colours. This can be understood in the context of the large contribution of TP-AGB stars to the infrared, even for young populations, resulting in a very tight (V-[3.6]) - se relation that in turn allows us to define a strong correlation between metallicity and velocity dispersion. Many Sa galaxies appear to follow the Fundamental Plane defined by E/S0 galaxies. Galaxies that appear offset from the relations correspond mostly to objects with extremely young populations, with signs of on-going, extended star formation. We correct for this effect in the Fundamental Plane, by replacing luminosity with stellar mass using an estimate of the stellar mass-to-light ratio, so that all galaxies are part of a tight, single relation. The new estimated coefficients are consistent in both photometric bands and suggest that differences in stellar populations account for about half of the observed tilt with respect to the virial prediction. After these corrections, the Slow Rotator family shows almost no intrinsic scatter around the best-fit Fundamental Plane.
The existence of a spatially resolved Star-Forming Main Sequence (rSFMS) and a spatially resolved Mass-Metallicity Relation (rMZR) is now well established for local galaxies. Moreover, gradients with metallicity decreasing with radius seem to be common in local disc galaxies. These observations suggest that galaxy formation is a self-regulating process, and provide constraints for galaxy evolution models. Studying the evolution of these relations at higher redshifts is still however very challenging. In this paper, we analyse three gravitationally lensed galaxies at z = 0.6, 0.7 and 1, observed with MUSE and SINFONI. These galaxies are highly magnified by galaxy clusters, which allow us to observe resolved scaling relations and metallicity gradients on physical scales of a couple of hundred parsecs, comparable to studies of local galaxies. We confirm that the rSFMS is already in place at these redshifts on sub-kpc scales, and establish, for the first time, the existence of the rMZR at higher redshifts. We develop a forward-modelling approach to fit 2D metallicity gradients of multiply imaged lensed galaxies in the image plane, and derive gradients of -0.027+/-0.003, -0.019+/-0.003 and -0.039+/-0.060 dex/kpc. Despite the fact that these are clumpy galaxies, typical of high redshift discs, the metallicity variations in the galaxies are well described by global linear gradients, and we do not see any difference in metallicity associated with the star-forming clumps.
The general properties of luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs) in the local universe are well known since large samples of these objects have been the subject of numerous spectroscopic works. There are, however, relatively few studies of large samples of LIRGs and ULIRGs using integral field spectroscopy (IFS). We analyze optical (3800-7200A) IFS data taken with the Potsdam Multi-Aperture Spectrophotometer (PMAS) of the central few kiloparsecs of 11 LIRGs. To study the stellar populations we fit the optical stellar continuum and the hydrogen recombination lines of selected regions. We analyze the excitation conditions of the gas using the spatially resolved properties of the brightest optical emission lines. The optical continua of the selected regions are well fitted with a combination of evolved (~0.7-10Gyr) and ionizing (1-20Myr) stellar populations. The latter is more obscured than the evolved population, and has visual extinctions in good agreement with those obtained from the Balmer decrement. Except for NGC 7771, there is no clear evidence for an important contribution to the optical light from an intermediate-aged population (~100-500Myr). Even after correcting for the presence of stellar absorption, a large fraction of spaxels with low observed equivalent widths of Halpha in emission still show enhanced [NII]/Halpha and [SII]/Halpha ratios. These ratios are likely to be produced by a combination of photoionization in HII regions and diffuse emission. These regions of enhanced ratios are generally coincident with low surface brightness HII regions and diffuse emission detected in the Halpha and Pa-alpha images. Using the PMAS line ratios and the NICMOS Pa-alpha photometry of HII regions we find that the fraction of diffuse emission in LIRGs varies from galaxy to galaxy, and it is generally less than 60% as found in other starburst galaxies. (Abridged)
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا