Do you want to publish a course? Click here

A Low Cost Remote Sensing System Using PC and Stereo Equipment

89   0   0.0 ( 0 )
 Added by Joel F. Campbell
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

A system using a personal computer, speaker, and a microphone is used to detect objects, and make crude measurements using a carrier modulated by a pseudorandom noise (PN) code. This system can be constructed using a personal computer and audio equipment commonly found in the laboratory or at home, or more sophisticated equipment that can be purchased at reasonable cost. We demonstrate its value as an instructional tool for teaching concepts of remote sensing and digital signal processing.



rate research

Read More

We describe the characteristics of low-cost ultra-high-power light emitting diodes (LEDs) for use in optical imaging experiments. We use the LEDs in experiments with bullfrog cardiac tissue and find that the signal-to-noise ratio is comparable to other commonly used illumination sources.
131 - Antara Sen , M.C. Sullivan 2021
Multipole expansions of electric charge and current distributions and the fields those multipoles create are a fundamental pillar of electromagnetic theory, but explanations and examples are rare beyond a dipole. In this paper we describe a low-cost exploration of magnetic multipoles. Using the field from ideal magnetic dipoles and a simple binomial approximation, we show that each multipole obeys $B propto r^n$, with $n=-3, -4,-5,-6$ for a dipole, quadrupole, sextupole, and octupole, respectively. Using commercially available NdFeB magnets and the magnetic field sensor inside a smartphone, we experimentally verify the power-law dependence of the multipole configurations. Finally, the open-source Python library Magpylib can simulate the magnetic field of arbitrary permanent magnet distributions, which also shows the same power law dependence for the different multipole configurations.
A comprehensive study of three-photon electromagnetically-induced transparency (EIT) and absorption (EIA) on the rubidium cascade $5S_{1/2} rightarrow 5P_{3/2}$ (laser wavelength 780~nm), $5P_{3/2} rightarrow 5D_{5/2}$ (776~nm), and $5D_{5/2}rightarrow 28F_{7/2}$ (1260~nm) is performed. The 780-nm probe and 776-nm dressing beams are counter-aligned through a Rb room-temperature vapor cell, and the 1260-nm coupler beam is co- or counter-aligned with the probe beam. Several cases of EIT and EIA, measured over a range of detunings of the 776-nm beam, are studied. The observed phenomena are modeled by numerically solving the Lindblad equation, and the results are interpreted in terms of the probe-beam absorption behavior of velocity- and detuning-dependent dressed states. To explore the utility of three-photon Rydberg EIA/EIT for microwave electric-field diagnostics, a sub-THz field generated by a signal source and a frequency quadrupler is applied to the Rb cell. The 100.633-GHz field resonantly drives the $28F_{7/2}leftrightarrow29D_{5/2}$ transition and causes Autler-Townes splittings in the Rydberg EIA/EIT spectra, which are measured and employed to characterize the performance of the microwave quadrupler.
119 - W. Sarlin 2019
The first phase of the MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications) project, MINERVA, was launched in September 2018. Through collaboration with the SCK-CEN, IN2P3 laboratories take in charge the developments of several parts of the accelerator, including a fully equipped Spoke cryomodule prototype and a cold valves box. This cryomodule will integrate two superconducting single spoke cavities operating at 2K, the RF power couplers and the cold tuning systems associated. For control and regulation purpose, a mTCA LLRF system prototype is being implemented and will be presented here alongside with the hardware, VHDL and EPICS developments that aim to fulfil MYRRHAs ambitious requirements.
The self-powered sensing system could harness ambient energy to power the sensor without the need for external electrical energy. Recently, the concept of photovoltaic (PV) self-powered gas sensing has aroused wider attentions due to room-temperature operation, low power consumption, small size and potential applications. The PV self-powered gas sensors integrate the photovoltaic effects and the gas sensing function into a single chip, which could truly achieve the goal of zero power consumption for an independent gas sensing device. As an emerging concept, the PV self-powered gas sensing has been achieved by using different strategies, including integrated gas sensor and solar cell, integrated light filter and solar cell, gas-sensitive heterojunction photovoltaics, and gas-sensitive lateral photovoltaics, respectively. The purpose of this review is to summarize recent advances of PV self-powered gas sensing and also remark on the directions for future research in this topic.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا