Do you want to publish a course? Click here

Reinforcement learning based sensing policy optimization for energy efficient cognitive radio networks

178   0   0.0 ( 0 )
 Added by Jan Oksanen
 Publication date 2011
and research's language is English




Ask ChatGPT about the research

This paper introduces a machine learning based collaborative multi-band spectrum sensing policy for cognitive radios. The proposed sensing policy guides secondary users to focus the search of unused radio spectrum to those frequencies that persistently provide them high data rate. The proposed policy is based on machine learning, which makes it adaptive with the temporally and spatially varying radio spectrum. Furthermore, there is no need for dynamic modeling of the primary activity since it is implicitly learned over time. Energy efficiency is achieved by minimizing the number of assigned sensors per each subband under a constraint on miss detection probability. It is important to control the missed detections because they cause collisions with primary transmissions and lead to retransmissions at both the primary and secondary user. Simulations show that the proposed machine learning based sensing policy improves the overall throughput of the secondary network and improves the energy efficiency while controlling the miss detection probability.



rate research

Read More

90 - Chang Tian , An Liu , Guang Huang 2021
We propose a successive convex approximation based off-policy optimization (SCAOPO) algorithm to solve the general constrained reinforcement learning problem, which is formulated as a constrained Markov decision process (CMDP) in the context of average cost. The SCAOPO is based on solving a sequence of convex objective/feasibility optimization problems obtained by replacing the objective and constraint functions in the original problems with convex surrogate functions. At each iteration, the convex surrogate problem can be efficiently solved by Lagrange dual method even the policy is parameterized by a high-dimensional function. Moreover, the SCAOPO enables to reuse old experiences from previous updates, thereby significantly reducing the implementation cost when deployed in the real-world engineering systems that need to online learn the environment. In spite of the time-varying state distribution and the stochastic bias incurred by the off-policy learning, the SCAOPO with a feasible initial point can still provably converge to a Karush-Kuhn-Tucker (KKT) point of the original problem almost surely.
Finding an optimal sensing policy for a particular access policy and sensing scheme is a laborious combinatorial problem that requires the system model parameters to be known. In practise the parameters or the model itself may not be completely known making reinforcement learning methods appealing. In this paper a non-parametric reinforcement learning-based method is developed for sensing and accessing multi-band radio spectrum in multi-user cognitive radio networks. A suboptimal sensing policy search algorithm is proposed for a particular multi-user multi-band access policy and the randomized Chair-Varshney rule. The randomized Chair-Varshney rule is used to reduce the probability of false alarms under a constraint on the probability of detection that protects the primary user. The simulation results show that the proposed method achieves a sum profit (e.g. data rate) close to the optimal sensing policy while achieving the desired probability of detection.
Most reinforcement learning (RL) algorithms assume online access to the environment, in which one may readily interleave updates to the policy with experience collection using that policy. However, in many real-world applications such as health, education, dialogue agents, and robotics, the cost or potential risk of deploying a new data-collection policy is high, to the point that it can become prohibitive to update the data-collection policy more than a few times during learning. With this view, we propose a novel concept of deployment efficiency, measuring the number of distinct data-collection policies that are used during policy learning. We observe that na{i}vely applying existing model-free offline RL algorithms recursively does not lead to a practical deployment-efficient and sample-efficient algorithm. We propose a novel model-based algorithm, Behavior-Regularized Model-ENsemble (BREMEN) that can effectively optimize a policy offline using 10-20 times fewer data than prior works. Furthermore, the recursive application of BREMEN is able to achieve impressive deployment efficiency while maintaining the same or better sample efficiency, learning successful policies from scratch on simulated robotic environments with only 5-10 deployments, compared to typical values of hundreds to millions in standard RL baselines. Codes and pre-trained models are available at https://github.com/matsuolab/BREMEN .
We propose a policy improvement algorithm for Reinforcement Learning (RL) which is called Rerouted Behavior Improvement (RBI). RBI is designed to take into account the evaluation errors of the Q-function. Such errors are common in RL when learning the $Q$-value from finite past experience data. Greedy policies or even constrained policy optimization algorithms which ignore these errors may suffer from an improvement penalty (i.e. a negative policy improvement). To minimize the improvement penalty, the RBI idea is to attenuate rapid policy changes of low probability actions which were less frequently sampled. This approach is shown to avoid catastrophic performance degradation and reduce regret when learning from a batch of past experience. Through a two-armed bandit with Gaussian distributed rewards example, we show that it also increases data efficiency when the optimal action has a high variance. We evaluate RBI in two tasks in the Atari Learning Environment: (1) learning from observations of multiple behavior policies and (2) iterative RL. Our results demonstrate the advantage of RBI over greedy policies and other constrained policy optimization algorithms as a safe learning approach and as a general data efficient learning algorithm. An anonymous Github repository of our RBI implementation is found at https://github.com/eladsar/rbi.
113 - Fei Ye , Xuxin Cheng , Pin Wang 2020
Lane-change maneuvers are commonly executed by drivers to follow a certain routing plan, overtake a slower vehicle, adapt to a merging lane ahead, etc. However, improper lane change behaviors can be a major cause of traffic flow disruptions and even crashes. While many rule-based methods have been proposed to solve lane change problems for autonomous driving, they tend to exhibit limited performance due to the uncertainty and complexity of the driving environment. Machine learning-based methods offer an alternative approach, as Deep reinforcement learning (DRL) has shown promising success in many application domains including robotic manipulation, navigation, and playing video games. However, applying DRL to autonomous driving still faces many practical challenges in terms of slow learning rates, sample inefficiency, and safety concerns. In this study, we propose an automated lane change strategy using proximal policy optimization-based deep reinforcement learning, which shows great advantages in learning efficiency while still maintaining stable performance. The trained agent is able to learn a smooth, safe, and efficient driving policy to make lane-change decisions (i.e. when and how) in a challenging situation such as dense traffic scenarios. The effectiveness of the proposed policy is validated by using metrics of task success rate and collision rate. The simulation results demonstrate the lane change maneuvers can be efficiently learned and executed in a safe, smooth, and efficient manner.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا