Do you want to publish a course? Click here

Equivariant holonomy for bundles and abelian gerbes

139   0   0.0 ( 0 )
 Added by Scott Wilson
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

This paper generalizes Bismuts equivariant Chern character to the setting of abelian gerbes. In particular, associated to an abelian gerbe with connection, an equivariantly closed differential form is constructed on the space of maps of a torus into the manifold. These constructions are made explicit using a new local version of the higher Hochschild complex, resulting in differential forms given by iterated integrals. Connections to two dimensional topological field theories are indicated. Similarly, this local higher Hochschild complex is used to calculate the 2-holonomy of an abelian gerbe along any closed oriented surface, as well as the derivative of 2-holonomy, which in the case of a torus fits into a sequence of higher holonomies and their differentials.



rate research

Read More

We introduce an axiomatic framework for the parallel transport of connections on gerbes. It incorporates parallel transport along curves and along surfaces, and is formulated in terms of gluing axioms and smoothness conditions. The smoothness conditions are imposed with respect to a strict Lie 2-group, which plays the role of a band, or structure 2-group. Upon choosing certain examples of Lie 2-groups, our axiomatic framework reproduces in a systematical way several known concepts of gerbes with connection: non-abelian differential cocycles, Breen-Messing gerbes, abelian and non-abelian bundle gerbes. These relationships convey a well-defined notion of surface holonomy from our axiomatic framework to each of these concrete models. Till now, holonomy was only known for abelian gerbes; our approach reproduces that known concept and extends it to non-abelian gerbes. Several new features of surface holonomy are exposed under its extension to non-abelian gerbes; for example, it carries an action of the mapping class group of the surface.
150 - Andrew Clarke 2013
We give a construction of $G_2$ and $Spin(7)$ instantons on exceptional holonomy manifolds constructed by Bryant and Salamon, by using an ansatz of spherical symmetry coming from the manifolds being the total spaces of rank-4 vector bundles. In the $G_2$ case, we show that, in the asymptotically conical model, the connections are asymptotic to Hermitian Yang-Mills connections on the nearly Kahler $S^3times S^3$.
We study super parallel transport around super loops in a quotient stack, and show that this geometry constructs a global version of the equivariant Chern character.
We extend the construction of the BFV-complex of a coisotropic submanifold from the Poisson setting to the Jacobi setting. In particular, our construction applies in the contact and l.c.s. settings. The BFV-complex of a coisotropic submanifold $S$ controls the coisotropic deformation problem of $S$ under both Hamiltonian and Jacobi equivalence.
In this Note, we propose a line bundle approach to odd-dimensional analogues of generalized complex structures. This new approach has three main advantages: (1) it encompasses all existing ones; (2) it elucidates the geometric meaning of the integrability condition for generalized contact structures; (3) in light of new results on multiplicative forms and Spencer operators, it allows a simple interpretation of the defining equations of a generalized contact structure in terms of Lie algebroids and Lie groupoids.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا