Do you want to publish a course? Click here

Voltage-controlled electron tunnelling from a single self-assembled quantum dot embedded in a two-dimensional-electron-gas-based photovoltaic cell

126   0   0.0 ( 0 )
 Added by Jonathan Mar
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We perform high-resolution photocurrent (PC) spectroscopy to investigate resonantly the neutral exciton ground-state (X0) in a single InAs/GaAs self-assembled quantum dot (QD) embedded in the intrinsic region of an n-i-Schottky photodiode based on a two-dimensional electron gas (2DEG), which was formed from a Si delta-doped GaAs layer. Using such a device, a single-QD PC spectrum of X0 is measured by sweeping the bias-dependent X0 transition energy through that of a fixed narrow-bandwidth laser via the quantum-confined Stark effect (QCSE). By repeating such a measurement for a series of laser energies, a precise relationship between the X0 transition energy and bias voltage is then obtained. Taking into account power broadening of the X0 absorption peak, this allows for high-resolution measurements of the X0 homogeneous linewidth and, hence, the electron tunnelling rate. The electron tunnelling rate is measured as a function of the vertical electric field and described accurately by a theoretical model, yielding information about the electron confinement energy and QD height. We demonstrate that our devices can operate as 2DEG-based QD photovoltaic cells and conclude by proposing two optical spintronic devices that are now feasible.



rate research

Read More

101 - A. Hogele , S. Seidl , M. Kroner 2004
The ground state of neutral and negatively charged excitons confined to a single self-assembled InGaAs quantum dot is probed in a direct absorption experiment by high resolution laser spectroscopy. We show how the anisotropic electron-hole exchange interaction depends on the exciton charge and demonstrate how the interaction can be switched on and off with a small dc voltage. Furthermore, we report polarization sensitive analysis of the excitonic interband transition in a single quantum dot as a function of charge with and without magnetic field.
The four-level exciton/biexciton system of a single semiconductor quantum dot acts as a two qubit register. We experimentally demonstrate an exciton-biexciton Rabi rotation conditional on the initial exciton spin in a single InGaAs/GaAs dot. This forms the basis of an optically gated two-qubit controlled-rotation (CROT) quantum logic operation where an arbitrary exciton spin is selected as the target qubit using the polarization of the control laser.
Measuring single-electron charge is one of the most fundamental quantum technologies. Charge sensing, which is an ingredient for the measurement of single spins or single photons, has been already developed for semiconductor gate-defined quantum dots, leading to intensive studies on the physics and the applications of single-electron charge, single-electron spin and photon-electron quantum interface. However, the technology has not yet been realized for self-assembled quantum dots despite their fascinating quantum transport phenomena and outstanding optical functionalities. In this paper, we report charge sensing experiments in self-assembled quantum dots. We choose two adjacent dots, and fabricate source and drain electrodes on each dot, in which either dot works as a charge sensor for the other target dot. The sensor dot current significantly changes when the number of electrons in the target dot changes by one, demonstrating single-electron charge sensing. We have also demonstrated real-time detection of single-electron tunnelling events. This charge sensing technique will be an important step towards combining efficient electrical readout of single-electron with intriguing quantum transport physics or advanced optical and photonic technologies developed for self-assembled quantum dots.
81 - M. V. Durnev 2021
We study theoretically transverse photoconductivity induced by circularly polarized radiation, i.e. the photovoltaic Hall effect, and linearly polarized radiation causing intraband optical transitions in two-dimensional electron gas (2DEG). We develop a microscopic theory of these effects based on analytical solution of the Boltzmann equation for arbitrary electron spectrum and scattering mechanism. We calculate the transverse photoconductivity of 2DEG with parabolic and linear dispersion for short-range and Coulomb scatterers at different temperatures. We show that the transverse electric current is significantly enhanced at frequencies comparable to the inverse energy relaxation time, whereas at higher frequencies the excitation spectrum and the direction of current depend on the scattering mechanism. We also analyse the effect of thermalization processes caused by electron-electron collisions on the photoconductivity.
Quantum dot lattices (QDLs) have the potential to allow for the tailoring of optical, magnetic and electronic properties of a user-defined artificial solid. We use a dual gated device structure to controllably tune the potential landscape in a GaAs/AlGaAs two-dimensional electron gas, thereby enabling the formation of a periodic QDL. The current-voltage characteristics, I(V), follow a power law, as expected for a QDL. In addition, a systematic study of the scaling behavior of I(V) allows us to probe the effects of background disorder on transport through the QDL. Our results are particularly important for semiconductor-based QDL architectures which aim to probe collective phenomena.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا