Do you want to publish a course? Click here

Incommensurate Spin Density Wave versus local magnetic inhomogeneities in Ba(Fe1-xNix)2As2: a 57Fe Mossbauer spectroscopy study

133   0   0.0 ( 0 )
 Added by Areta Olariu
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report 57Fe Mossbauer spectral results in pure and doped Ba(Fe1-xNix)2As2 with x=0.01 and 0.03. We show that all these materials present a first-order magnetic transition towards a magnetically ordered state. In the doped compounds, a broad distribution of Fe hyperfine fields is present in the magnetic phase. We successfully fit the Mossbauer data in Ba(Fe1-xNix)2As2 in the framework of two different models: 1) an incommensurate spin density wave; 2) a dopant-induced perturbation of the Fe polarization, recently proposed to interpret 75As NMR data in Ba(Fe1-xNix)2As2, which is valid only in the very dilute limit x=0.01. Moreover, we show here that these NMR data can also be successfully analysed in terms of the incommensurate model for all doping contents by using the parameters obtained from the Mossbauer spectral analysis. Therefore it is not possible to rule out the presence of an incommensurate spin density wave on the basis of the 75As NMR data.



rate research

Read More

75As NMR and susceptiblity were measured in a Ba(Fe1-xCox)2As2 single crystal for x=6%. Nuclear Magnetic Resonance (NMR) spectra and relaxation rates allow to show that all Fe sites experience an incommensurate magnetic ordering below T=31K. Comparison with undoped compound allows to estimate a typical moment of 0.05 muB. Anisotropy of the NMR widths can be interpreted using a model of incommensurability with a wavevector (1/2-eps,0,l) with eps of the order of 0.04. Below TC=21.8K, a full volume superconductivity develops as shown by susceptibility and relaxation rate, and magnetic order remains unaffected, demonstrating coexistence of both states on each Fe site.
75As NMR and susceptiblity were measured in a Ba(Fe1-xCox)2As2 single crystal for x=6% for various field H values and orientations. The sharpness of the superconducting and magnetic transitions demonstrates a homogeneity of the Co doping x better than +-0.25%. On the nanometer scale, the paramagnetic part of the NMR spectra is found very anisotropic and very narrow for H//ab which allows to rule out the interpretation of Ref.[6] in terms of strong Co induced electronic inhomogeneities. We propose that a distribution of hyperfine couplings and chemical shifts due to the Co effect on its nearest As explains the observed linewidths and relaxations. All these measurements show that Co substitution induces a very homogeneous electronic doping in BaFe2As2, from nano to micrometer lengthscales, on the contrary to the K doping.
146 - M. Yi , D. H. Lu , J.-H. Chu 2010
Nematicity, defined as broken rotational symmetry, has recently been observed in competing phases proximate to the superconducting phase in the cuprate high temperature superconductors. Similarly, the new iron-based high temperature superconductors exhibit a tetragonal to orthorhombic structural transition (i.e. a broken C4 symmetry) that either precedes or is coincident with a collinear spin density wave (SDW) transition in undoped parent compounds, and superconductivity arises when both transitions are suppressed via doping. Evidence for strong in-plane anisotropy in the SDW state in this family of compounds has been reported by neutron scattering, scanning tunneling microscopy, and transport measurements. Here we present an angle resolved photoemission spectroscopy study of detwinned single crystals of a representative family of electron-doped iron-arsenide superconductors, Ba(Fe1-xCox)2As2 in the underdoped region. The crystals were detwinned via application of in-plane uniaxial stress, enabling measurements of single domain electronic structure in the orthorhombic state. At low temperatures, our results clearly demonstrate an in-plane electronic anisotropy characterized by a large energy splitting of two orthogonal bands with dominant dxz and dyz character, which is consistent with anisotropy observed by other probes. For compositions x>0, for which the structural transition (TS) precedes the magnetic transition (TSDW), an anisotropic splitting is observed to develop above TSDW, indicating that it is specifically associated with TS. For unstressed crystals, the band splitting is observed close to TS, whereas for stressed crystals the splitting is observed to considerably higher temperatures, revealing the presence of a surprisingly large in-plane nematic susceptibility in the electronic structure.
We report muon spin rotation ($mu$SR) measurements of single crystal Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ and Sr(Fe$_{1-x}$Co$_x$)$_2$As$_2$. From measurements of the magnetic field penetration depth $lambda$ we find that for optimally- and over-doped samples, $1/lambda(Tto 0)^2$ varies monotonically with the superconducting transition temperature T$_{rm C}$. Within the superconducting state we observe a positive shift in the muon precession signal, likely indicating that the applied field induces an internal magnetic field. The size of the induced field decreases with increasing doping but is present for all Co concentrations studied.
Magnetic measurements and 57Fe Mossbauer spectroscopy studies were performed on oxygen- deficient high temperature superconductor SmFeAsO0.85 with TC=52.4 K. The upper-critical behavior (HC2) values were extracted from the real part of ac measurements. The field dependence of HC2 is consistent with a two band model. M{o}ssbauer spectra below and above TC consist of a singlet and a doublet, which are attributed to Fe ions which have two or one oxygen ions in their close vicinity, respectively. No change is observed in the major (~75%) singlet related to Fe ions surrounded by two oxygen ions. On the other hand, the doublet which senses oxygen vacancies shows a well defined magnetic sextet below TC. This indicates coexistence on a microscopic level of the two mutually exclusive states namely: superconductivity which is confined to the Fe-As layers and magnetism, in the same layers. Alternatively, the hyperfine parameters of the doublet are similar to the reported values of FeAs which orders magnetically at 77 K. Thus the magnetic features observed below TC, may be related to FeAs as an extra phase.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا