No Arabic abstract
We report the discovery of large amounts of cold (T ~ 10^4 K), chemically young gas in an overdensity of galaxies at redshift z ~ 1.6 in the Great Observatories Origins Deep Survey southern field (GOODS-S). The gas is identified thanks to the ultra-strong Mg II absorption features it imprints in the rest-frame UV spectra of galaxies in the background of the overdensity. There is no evidence that the optically-thick gas is part of any massive galaxy (i.e. M_star > 4x10^9 M_sun), but rather is associated with the overdensity; less massive and fainter galaxies (25.5 < z_850 < 27.5 mag) have too large an impact parameter to be causing ultra-strong absorption systems, based on our knowledge of such systems. The lack of corresponding Fe II absorption features, not detected even in co-added spectra, suggests that the gas is chemically more pristine than the ISM and outflows of star-forming galaxies at similar redshift, including those in the overdensity itself, and comparable to the most metal-poor stars in the Milky Way halo. A crude estimate of the projected covering factor of the high-column density gas (N_H >~ 10^20 cm-2) based on the observed fraction of galaxies with ultra-strong absorbers is C_F ~ 0.04. A broad, continuum absorption profile extending to the red of the interstellar Mg II absorption line by <~ 2000 km/s is possibly detected in two independent co-added spectra of galaxies of the overdensity, consistent with a large-scale infall motion of the gas onto the overdensity and its galaxies. Overall, these findings provides the first tentative evidence of accretion of cold, chemically young gas onto galaxies at high redshift, possibly feeding their star formation activity. The fact that the galaxies are members of a large structure, as opposed to field galaxies, might play a significant role in our ability to detect the accreting gas.
We investigate rest-frame near-infrared (NIR) morphologies of a sample of 139 galaxies with M_{s} >= 1 x 10^{10} M_{sun} at z=0.8-1.2 in the GOODS-North field using our deep NIR imaging data (MOIRCS Deep Survey, MODS). We focus on Luminous Infrared Galaxies (LIRGs), which dominate high star formation rate (SFR) density at z~1, in the sample identified by cross-correlating with the Spitzer/MIPS 24um source catalog. We perform two-dimensional light profile fitting of the z~1 galaxies in the Ks-band (rest-frame J-band) with a single component Sersic model. We find that at z~1, ~90% of LIRGs have low Sersic indices (n<2.5, similar to disk-like galaxies) in the Ks-band, and those disk-like LIRGs consist of ~60% of the whole disk-like sample above M_{s} >= 3 x 10^{10} M_{sun}. The z~1 disk-like LIRGs are comparable or ~20% small at a maximum in size compared to local disk-like galaxies in the same stellar mass range. If we examine rest-frame UV-optical morphologies using the HST/ACS images, the rest-frame B-band sizes of the z~1 disk-like galaxies are comparable to those of the local disk-like galaxies as reported by previous studies on size evolution of disk-like galaxies in the rest-frame optical band. Measuring color gradients (galaxy sizes as a function of wavelength) of the z~1 and local disk-like galaxies, we find that the z~1 disk-like galaxies have 3-5 times steeper color gradient than the local ones. Our results indicate that (i) more than a half of relatively massive disk-like galaxies at z~1 are in violent star formation epochs observed as LIRGs, and also (ii) most of those LIRGs are constructing their fundamental disk structure vigorously. The high SFR density in the universe at z~1 may be dominated by such star formation in disk region in massive galaxies.
We present the first results from a near-IR spectroscopic survey of the COSMOS field, using the Fiber Multi-Object Spectrograph on the Subaru telescope, designed to characterize the star-forming galaxy population at $1.4<z<1.7$. The high-resolution mode is implemented to detect H$alpha$ in emission between $1.6{rm -}1.8 mathrm{mu m}$ with $f_{rm Halpha}gtrsim4times10^{-17}$ erg cm$^{-2}$ s$^{-1}$. Here, we specifically focus on 271 sBzK-selected galaxies that yield a H$alpha$ detection thus providing a redshift and emission line luminosity to establish the relation between star formation rate and stellar mass. With further $J$-band spectroscopy for 89 of these, the level of dust extinction is assessed by measuring the Balmer decrement using co-added spectra. We find that the extinction ($0.6lesssim A_mathrm{Halpha} lesssim 2.5$) rises with stellar mass and is elevated at high masses compared to low-redshift galaxies. Using this subset of the spectroscopic sample, we further find that the differential extinction between stellar and nebular emission hbox{$E_mathrm{star}(B-V)/E_mathrm{neb}(B-V)$} is 0.7--0.8, dissimilar to that typically seen at low redshift. After correcting for extinction, we derive an H$alpha$-based main sequence with a slope ($0.81pm0.04$) and normalization similar to previous studies at these redshifts.
[abridged] We present interferometric CO observations of twelve z~2 submillimetre-faint, star-forming radio galaxies (SFRGs) which are thought to be ultraluminous infrared galaxies (ULIRGs) possibly dominated by warmer dust (T_dust ~> 40 K) than submillimetre galaxies (SMGs) of similar luminosities. Four other CO-observed SFRGs are included from the literature, and all observations are taken at the Plateau de Bure Interferometer (PdBI) in the compact configuration. Ten of the sixteen SFRGs observed in CO (63%) are detected at >4sigma with a mean inferred molecular gas mass of ~2*10^10 M_sun. SFRGs trend slightly above the local ULIRG L_FIR-L_CO relation. Since SFRGs are about two times fainter in radio luminosity but exhibit similar CO luminosities to SMGs, this suggests SFRGs are slightly more efficient star formers than SMGs at the same redshifts. SFRGs also have a narrow mean CO line width, 320+-80km/s. SFRGs bridge the gap between properties of very luminous >5*10^12 L_sun SMGs and those of local ULIRGs and are consistent with intermediate stage major mergers. We suspect that more moderate-luminosity SMGs, not yet surveyed in CO, would show similar molecular gas properties to SFRGs. The AGN fraction of SFRGs is consistent with SMGs and is estimated to be 0.3+-0.1, suggesting that SFRGs are observed near the peak phase of star formation activity and not in a later, post-SMG enhanced AGN phase. This CO survey of SFRGs serves as a pilot project for the much more extensive survey of Herschel and SCUBA-2 selected sources which only partially overlap with SMGs. Better constraints on CO properties of a diverse high-z ULIRG population are needed from ALMA to determine the evolutionary origin of extreme starbursts, and what role ULIRGs serve in catalyzing the formation of massive stellar systems in the early Universe.
Using the Australia Telescope Compact Array (ATCA), we conducted a survey of CO J=1-0 and J=2-1 line emission towards strongly lensed high-redshift dusty star forming galaxies (DSFGs) previously discovered with the South Pole Telescope (SPT). Our sample comprises 17 sources that had CO-based spectroscopic redshifts obtained with the Atacama Large Millimeter/submillimeter Array (ALMA) and the Atacama Pathfinder Experiment (APEX). We detect all sources with known redshifts in either CO J=1-0 or J=2-1. Twelve sources are detected in the 7-mm continuum. The derived CO luminosities imply gas masses in the range (0.5-11)x10^{10} M_sun and gas depletion timescales <200 Myr, using a CO to gas mass conversion factor alpha_CO=0.8 M_sun (K km/s pc^2)^{-1}. Combining the CO luminosities and dust masses, along with a fixed gas-to-dust ratio, we derive alpha_CO factors in the range 0.4-1.8, similar to what is found in other starbursting systems. We find small scatter in alpha_CO values within the sample, even though inherent variations in the spatial distribution of dust and gas in individual cases could bias the dust-based alpha_CO estimates. We find that lensing magnification factors based on the CO linewidth to luminosity relation (mu_CO) are highly unreliable, but particularly when mu<5. Finally, comparison of the gas and dynamical masses suggest that the average molecular gas fraction stays relatively constant at z=2-5 in the SPT DSFG sample.
How mass assembly occurs in galaxies and which process(es) contribute to this activity are among the most highly debated questions in galaxy formation theories. This has motivated our survey MASSIV of 0.9<z<1.9 star-forming galaxies selected from the purely flux-limited VVDS redshift survey. For the first time, we derive the relations between galaxy size, mass, and internal velocity, and the baryonic Tully-Fisher relation, from a statistically representative sample of star-forming galaxies. We find a dynamical mass that agrees with those of rotating galaxies containing a gas fraction of ~20%, perfectly consistent with the content derived using the Kennicutt-Schmidt formulation and the expected evolution. Non-rotating galaxies have more compact sizes for their stellar component, and are less massive than rotators, but do not have statistically different sizes for their gas-component. We measure a marginal evolution in the size-stellar mass and size-velocity relations in which discs become evenly smaller with cosmic time at fixed stellar mass or velocity, and are less massive at a given velocity than in the local Universe. The scatter in the Tully-Fisher relation is smaller when we introduce the S05 index, which we interpret as evidence of an increase in the contribution to galactic kinematics of turbulent motions with cosmic time. We report a persistently large scatter for rotators in our relations, that we suggest is intrinsic, and possibly caused by complex physical mechanism(s) at work in our stellar mass/luminosity regime and redshift range. Our results consistently point towards a mild, net evolution of these relations, comparable to those predicted by cosmological simulations of disc formation for at least 8Gyr and a dark halo strongly coupled with galactic spectrophotometric properties.