No Arabic abstract
At high angular frequencies, beyond the damping tail of the primary power spectrum, the dominant contribution to the power spectrum of cosmic microwave background (CMB) temperature fluctuations is the thermal Sunyaev-Zeldovich (tSZ) effect. We investigate various important statistical properties of the Sunyaev-Zeldovich maps, using well-motivated models for dark matter clustering to construct statistical descriptions of the tSZ effect to all orders enabling us to determine the entire probability distribution function (PDF). Any generic deterministic biasing scheme can be incorporated in our analysis and the effects of projection, biasing and the underlying density distribution can be analysed separately and transparently in this approach. We introduce the cumulant correlators as tools to analyse tSZ catalogs and relate them to corresponding statistical descriptors of the underlying density distribution. The statistics of hot spots in frequency-cleaned tSZ maps are also developed in a self-consistent way to an arbitrary order, to obtain results complementary to those found using the halo model. We also consider different beam sizes, to check the extent to which the PDF can be extracted from various observational configurations. The formalism is presented with two specific models for underlying matter clustering: (1) the hierarchical ansatz; and (2) the lognormal distribution. We find both models to be in very good agreement with the simulation results, though the lognormal model has an edge over the hierarchical model.
The thermal Sunyaev-Zeldovich (tSZ) effect induces a Compton-$y$ distortion in cosmic microwave background (CMB) temperature maps that is sensitive to a line of sight integral of the ionized gas pressure. By correlating the positions of galaxies with maps of the Compton-$y$ distortion, one can probe baryonic feedback processes and study the thermodynamic properties of a significant fraction of the gas in the Universe. Using a model fitting approach, we forecast how well future galaxy and CMB surveys will be able to measure these correlations, and show that powerful constraints on halo pressure profiles can be obtained. Our forecasts are focused on correlations between galaxies and halos identified by the upcoming Dark Energy Spectroscopic Instrument survey and tSZ maps from the Simons Observatory and CMB-S4 experiments, but have general applicability to other surveys, such as the Large Synoptic Survey Telescope. We include prescriptions for observational systematics, such as halo miscentering and halo mass bias, demonstrating several important degeneracies with pressure profile parameters. Assuming modest priors on these systematics, we find that measurements of halo-$y$ and galaxy-$y$ correlations with future surveys will yield tight constraints on the pressure profiles of group-scale dark matter halos, and enable current feedback models to either be confirmed or ruled out.
We present novel statistical tools to cross-correlate frequency cleaned thermal Sunyaev-Zeldovich (tSZ) maps and tomographic weak lensing (wl) convergence maps. Moving beyond the lowest order cross-correlation, we introduce a hierarchy of mixed higher-order statistics, the cumulants and cumulant correlators, to analyze non-Gaussianity in real space, as well as corresponding polyspectra in the harmonic domain. Using these moments, we derive analytical expressions for the joint two-point probability distribution function (2PDF) for smoothed tSZ (y_s) and convergence (kappa_s) maps. The presence of tomographic information allows us to study the evolution of higher order {em mixed} tSZ-weak lensing statistics with redshift. We express the joint PDFs p_{kappa y}(kappa_s,y_s) in terms of individual one-point PDFs (p_{kappa}(kappa_s), p_y(y_s)) and the relevant bias functions (b_{kappa}(kappa_s), b_y(y_s)). Analytical results for two different regimes are presented that correspond to the small and large angular smoothing scales. Results are also obtained for corresponding {em hot spots} in the tSZ and convergence maps. In addition to results based on hierarchical techniques and perturbative methods, we present results of calculations based on the lognormal approximation. The analytical expressions derived here are generic and applicable to cross-correlation studies of arbitrary tracers of large scale structure including e.g. that of tSZ and soft X-ray background.
At high angular frequencies the thermal Sunyaev-Zeldovich (tSZ) effect constitutes the dominant signal in the CMB sky. The tSZ effect is caused by large scale pressure fluctuations in the baryonic distribution in the Universe so its statistical properties provide estimates of corresponding properties of the projected 3D pressure fluctuations. Its power spectrum is a sensitive probe of the density fluctuations, and the bispectrum can be used to separate the bias associated with pressure. The bispectrum is often probed with a one-point real-space analogue, the skewness. In addition to the skewness the morphological properties, as probed by the well known Minkowski Functionals (MFs), also require the generalized one-point statistics, which at the lowest order are identical to the skewness parameters. The concept of generalized skewness parameters can be extended to define a set of three associated generalized skew-spectra. We use these skew-spectra to probe the morphology of the tSZ sky or the y-sky. We show how these power spectra can be recovered from the data in the presence of arbitrary mask and noise templates using the well known Pseudo-Cl (PCL) approach for arbitrary beam shape. We also employ an approach based on the halo model to compute the tSZ bispectrum. The bispectrum from each of these models is then used to construct the generalized skew-spectra. We consider the performance of an all-sky survey with Planck-type noise and compare the results against a noise-free ideal experiment using a range of smoothing angles. We find that the skew-spectra can be estimated with very high signal-to-noise ratio from future frequency cleaned tSZ maps that will be available from experiments such as Planck. This will allow their mode by mode estimation for a wide range of angular frequencies and will help us to differentiate them from various other sources of non-Gaussianity.
Optimal analyses of many signals in the cosmic microwave background (CMB) require map-level extraction of individual components in the microwave sky, rather than measurements at the power spectrum level alone. To date, nearly all map-level component separation in CMB analyses has been performed exclusively using satellite data. In this paper, we implement a component separation method based on the internal linear combination (ILC) approach which we have designed to optimally account for the anisotropic noise (in the 2D Fourier domain) often found in ground-based CMB experiments. Using this method, we combine multi-frequency data from the Planck satellite and the Atacama Cosmology Telescope Polarimeter (ACTPol) to construct the first wide-area, arcminute-resolution component-separated maps (covering approximately 2100 sq. deg.) of the CMB temperature anisotropy and the thermal Sunyaev-Zeldovich (tSZ) effect sourced by the inverse-Compton scattering of CMB photons off hot, ionized gas. Our ILC pipeline allows for explicit deprojection of various contaminating signals, including a modified blackbody approximation of the cosmic infrared background (CIB) spectral energy distribution. The cleaned CMB maps will be a useful resource for CMB lensing reconstruction, kinematic SZ cross-correlations, and primordial non-Gaussianity studies. The tSZ maps will be used to study the pressure profiles of galaxies, groups, and clusters through cross-correlations with halo catalogs, with dust contamination controlled via CIB deprojection. The data products described in this paper are available on LAMBDA.
The determination of the morphology of galaxy clusters has important repercussion on their cosmological and astrophysical studies. In this paper we address the morphological characterisation of synthetic maps of the Sunyaev--Zeldovich (SZ) effect produced for a sample of 258 massive clusters ($M_{vir}>5times10^{14}h^{-1}$M$_odot$ at $z=0$), extracted from the MUSIC hydrodynamical simulations. Specifically, we apply five known morphological parameters, already used in X-ray, two newly introduced ones, and we combine them together in a single parameter. We analyse two sets of simulations obtained with different prescriptions of the gas physics (non radiative and with cooling, star formation and stellar feedback) at four redshifts between 0.43 and 0.82. For each parameter we test its stability and efficiency to discriminate the true cluster dynamical state, measured by theoretical indicators. The combined parameter discriminates more efficiently relaxed and disturbed clusters. This parameter had a mild correlation with the hydrostatic mass ($sim 0.3$) and a strong correlation ($sim 0.8$) with the offset between the SZ centroid and the cluster centre of mass. The latter quantity results as the most accessible and efficient indicator of the dynamical state for SZ studies.