Do you want to publish a course? Click here

The radial and azimuthal profiles of Mg II absorption around 0.5 < z < 0.9 zCOSMOS galaxies of different colors, masses and environments

228   0   0.0 ( 0 )
 Added by Rongmon Bordoloi
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We map the radial and azimuthal distribution of Mg II gas within 200 kpc (physical) of 4000 galaxies at redshifts 0.5 < z < 0.9 using co-added spectra of more than 5000 background galaxies at z > 1. We investigate the variation of Mg II rest frame equivalent width as a function of the radial impact parameter for different subsets of foreground galaxies selected in terms of their rest-frame colors and masses. Blue galaxies have a significantly higher average Mg II equivalent width at close galactocentric radii as compared to the red galaxies. Amongst the blue galaxies, there is a correlation between Mg II equivalent width and galactic stellar mass of the host galaxy. We also find that the distribution of Mg II absorption around group galaxies is more extended than that for non-group galaxies, and that groups as a whole have more extended radial profiles than individual galaxies. Interestingly, these effects can be satisfactorily modeled by a simple superposition of the absorption profiles of individual member galaxies, assuming that these are the same as those of non-group galaxies, suggesting that the group environment may not significantly enhance or diminish the Mg II absorption of individual galaxies. We show that there is a strong azimuthal dependence of the Mg II absorption within 50 kpc of inclined disk-dominated galaxies, indicating the presence of a strongly bipolar outflow aligned along the disk rotation axis. There is no significant dependence of Mg II absorption on the apparent inclination angle of disk-dominated galaxies.



rate research

Read More

140 - C. Knobel , S. J. Lilly , K. Kovac 2012
We examine the red fraction of central and satellite galaxies in the large zCOSMOS group catalog out to z ~ 0.8 correcting for both the incompleteness in stellar mass and for the less than perfect purities of the central and satellite samples. We show that, at all masses and at all redshifts, the fraction of satellite galaxies that have been quenched, i.e., are red, is systematically higher than that of centrals, as seen locally in the Sloan Digital Sky Survey (SDSS). The satellite quenching efficiency, which is the probability that a satellite is quenched because it is a satellite rather than a central, is, as locally, independent of stellar mass. Furthermore, the average value is about 0.5, which is also very similar to that seen in the SDSS. We also construct the mass functions of blue and red centrals and satellites and show that these broadly follow the predictions of the Peng et al. analysis of the SDSS groups. Together, these results indicate that the effect of the group environment in quenching satellite galaxies was very similar when the universe was about a half its present age, as it is today.
157 - A. Raichoor , S. Mei , F. Nakata 2011
We have derived masses and ages for 79 early-type galaxies (ETGs) in different environments at z~1.3 in the Lynx supercluster and in the GOODS/CDF-S field using multiwavelength (0.6-4.5 $mu$m; KPNO, Palomar, Keck, HST, Spitzer) datasets. At this redshift the contribution of the TP-AGB phase is important for ETGs, and the mass and age estimates depend on the choice of the stellar population model used in the spectral energy distribution fits. We describe in detail the differences among model predictions for a large range of galaxy ages, showing the dependence of these differences on age. Current models still yield large uncertainties. While recent models from Maraston and Charlot & Bruzual offer better modeling of the TP-AGB phase with respect to less recent Bruzual & Charlot models, their predictions do not often match. The modeling of this TP-AGB phase has a significant impact on the derived parameters for galaxies observed at high-redshift. Some of our results do not depend on the choice of the model: for all models, the most massive galaxies are the oldest ones, independent of the environment. When using Maraston and Charlot & Bruzual models, the mass distribution is similar in the clusters and in the groups, whereas in our field sample there is a deficit of massive (M $gtrsim$ 10^11 Msun) ETGs. According to those last models, ETGs belonging to the cluster environment host on average older stars with respect to group and field populations. This difference is less significant than the age difference in galaxies of different masses.
120 - G. G. Kacprzak 2011
We have used GIM2D to quantify the morphological properties of 40 intermediate redshift MgII absorption-selected galaxies (0.03<Wr(2796)<2.9 Ang), imaged with WFPC-2/HST, and compared them to the halo gas properties measured form HIRES/Keck and UVES/VLT quasar spectra. We find that as the quasar-galaxy separation, D, increases the MgII equivalent decreases with large scatter, implying that D is not the only physical parameter affecting the distribution and quantity of halo gas. Our main result shows that inclination correlates with MgII absorption properties after normalizing out the relationship (and scatter) between the absorption properties and D. We find a 4.3 sigma correlation between Wr(2796) and galaxy inclination, normalized by impact parameter, i/D. Other measures of absorption optical depth also correlate with i/D at greater than 3.2 sigma significance. Overall, this result suggests that MgII gas has a co-planer geometry, not necessarily disk-like, that is coupled to the galaxy inclination. It is plausible that the absorbing gas arises from tidal streams, satellites, filaments, etc., which tend to have somewhat co-planer distributions. This result does not support a picture in which MgII absorbers with Wr(2796)<1A are predominantly produced by star-formation driven winds. We further find that; (1) MgII host galaxies have quantitatively similar bulge and disk scale length distribution to field galaxies at similar redshifts and have a mean disk and bulge scale length of 3.8kpc and 2.5kpc, respectively; (2) Galaxy color and luminosity do not correlate strongly with absorption properties, implying a lack of a connection between host galaxy star formation rates and absorption strength; (3) Parameters such as scale lengths and bulge-to-total ratios do not significantly correlate with the absorption parameters, suggesting that the absorption is independent of galaxy size or mass.
330 - A. Meiksin 2015
We compare predictions of large-scale cosmological hydrodynamical simulations for neutral hydrogen absorption signatures in the vicinity of 1e11 - 1e12.5 MSun haloes with observational measurements. Two different hydrodynamical techniques and a variety of prescriptions for gas removal in high density regions are examined. Star formation and wind feedback play only secondary roles in the HI absorption signatures outside the virial radius, but play important roles within. Accordingly, we identify three distinct gaseous regions around a halo: the virialized region, the mesogalactic medium outside the virial radius arising from the extended haloes of galaxies out to about two turnaround radii, and the intergalactic medium beyond. Predictions for the amount of absorption from the mesogalactic and intergalactic media are robust across different methodologies, and the predictions agree with the amount of absorption observed around star-forming galaxies and QSO host galaxies. Recovering the measured amount of absorption within the virialized region, however, requires either a higher dynamic range in the simulations, additional physics, or both.
One of the key unanswered questions in the study of galaxy evolution is what physical processes inside galaxies drive the changes in the SFRs in individual galaxies that, taken together, produce the large decline in the global star-formation rate density (SFRD) to redshifts since z~2. Many studies of the SFR at intermediate redshifts have been made as a function of the integrated stellar mass of galaxies but these did not use information on the internal structural properties of the galaxies. In this paper we present a comparative study of the dependence of SFRs on the average surface mass densities (SigmaM) of galaxies of different morphological types up to z~1 using the zCOSMOS and SDSS surveys. The main findings about the evolution of these relatively massive galaxies are: 1) There is evidence that, for both SDSS ans zCOSMOS galaxies, the mean specific SFR within a given population (either disk-dominated or bulge-dominated) is independent of SigmaM; 2) The observed SSFR - SigmaM step-function relation is due, at all investigated redshifts, to the changing mix of disk-dominated and bulge-dominated galaxies as surface density increases and the strong difference in the average SSFR between disks and bulges. We also find a modest differential evolution in the size-mass relations of disk and spheroid galaxies; 3) The shape of the median SSFR - SigmaM relation is similar, but with median SSFR values that are about 5-6 times higher in zCOSMOS galaxies than for SDSS, across the whole range of SigmaM, and in both spheroid and disk galaxies. This increase matches that of the global SFRD of the Universe as a whole, emphasizing that galaxies of all types are contributing, proportionally, to the global increase in SFRD in the Universe back to these redshifts (abridged).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا