Do you want to publish a course? Click here

Non-Standard Interactions at a Neutrino Factory: Correlations and CP violation

101   0   0.0 ( 0 )
 Added by Pilar Coloma
 Publication date 2011
  fields
and research's language is English




Ask ChatGPT about the research

We explore the potential of several Neutrino Factory (NF) setups to constrain, discover and measure new physics effects due to Non-Standard Interactions (NSI) in propagation through Earth matter. We first study the impact of NSI in the measurement of $theta_{13}$: we find that these could be large due to strong correlations of $theta_{13}$ with NSI parameters in the golden channel, and the inclusion of a detector at the magic baseline is crucial in order to reduce them as much as possible. We present, then, the sensitivity of the considered NF setups to the NSI parameters, paying special attention to correlations arising between them and the standard oscillation parameters, when all NSI parameters are introduced at once. Off-diagonal NSI parameters could be tested down to the level of $10^{-3}$, whereas the diagonal combinations $(epsilon_{ee} - epsilon_{tautau})$ and $(epsilon_{mumu}-epsilon_{tautau})$ can be tested down to $10^{-1}$ and $10^{-2}$, respectively. The possibilities of observing CP violation in this context are also explored, by presenting a first scan of the CP discovery potential of the NF setups to the phases $phi_{emu}, phi_{etau}$ and $delta$. We study separately the case where CP violation comes only from non-standard sources, and the case where it is entangled with the standard source, $delta$. In case $delta$ turns out to be CP conserving, the interesting possibility of observing CP violation for reasonably small values of the NSI parameters emerges.



rate research

Read More

356 - A. Donini 1999
The prospects of measuring the leptonic angles and CP-odd phases at a {em neutrino factory} are discussed in the scenario of three active plus one sterile neutrino. We consider the $ u_mu raw u_e$ LSND signal. Its associated large mass difference leads to observable neutrino oscillations at short ($sim 1$ km) baseline experiments. Sensitivities to the leptonic angles down to $10^{-3}$ can be easily achieved with a 1 Ton detector. Longer baseline experiments ($sim 100$ km) with a 1 Kton detector can provide very clean tests of CP-violation especially through tau lepton detection.
In neutrino oscillation with non-standard interactions (NSI) the system is enriched with CP violation caused by phases due to NSI in addition to the standard lepton Kobayashi-Maskawa phase delta. In this paper we show that it is possible to disentangle the two CP violating effects by measurement of muon neutrino appearance by a near-far two detector setting in neutrino factory experiments. Prior to the quantitative analysis we investigate in detail the various features of the neutrino oscillations with NSI, but under the assumption that only one of the NSI elements, epsilon_{e mu} or epsilon_{e tau}, is present. They include synergy between the near and the far detectors, the characteristic differences between the epsilon_{e mu} and epsilon_{etau} systems, and in particular, the parameter degeneracy. Finally, we use a concrete setting with the muon energy of 50 GeV and magnetized iron detectors at two baselines, one at L=3000 km and the other at L=7000 km, each having a fiducial mass of 50 kton to study the discovery potential of NSI and its CP violation effects. We demonstrate, by assuming 4 times 10^{21} useful muon decays for both polarities, that one can identify non-standard CP violation down to | epsilon_{e mu} | simeq text{a few} times 10^{-3}, and | epsilon_{e tau} | simeq 10^{-2} at 3sigma CL for theta_{13} down to sin^2 2theta_{13} = 10^{-4} in most of the region of delta. The impact of the existence of NSI on the measurement of delta and the mass hierarchy is also worked out.
Neutrino oscillation experiments are known to be sensitive to Non-Standard Interactions (NSIs). We extend the NSI formalism to include one-loop effects. We discuss universal effects induced by corrections to the tree level W exchange, as well as non-universal effects that can arise from scalar charged current interactions. We show how the parameters that can be extracted from the experiments are obtained from various loop amplitudes, which include vertex corrections, wave function renormalizations, mass corrections as well as box diagrams. As an illustrative example, we discuss NSIs at one loop in the Minimal Supersymmetric Standard Model (MSSM) with generic lepton flavor violating sources in the soft sector. We argue that the size of one-loop NSIs can be large enough to be probed in future neutrino oscillation experiments.
183 - O. G. Miranda , H. Nunokawa 2015
Neutrino oscillations have become well-known phenomenon; the measurements of neutrino mixing angles and mass squared differences are continuously improving. Future oscillation experiments will eventually determine the remaining unknown neutrino parameters, namely, the mass ordering, normal or inverted, and the CP-violating phase. On the other hand, the absolute mass scale of neutrinos could be probed by cosmological observations, single beta decay as well as by neutrinoless double beta decay experiments. Furthermore, the last one may shed light on the nature of neutrinos, Dirac or Majorana, by measuring the effective Majorana mass of neutrinos. However, the neutrino mass generation mechanism remains unknown. A well-motivated phenomenological approach to search for new physics, in the neutrino sector, is that of non-standard interactions. In this short review, the current constraints in this picture, as well as the perspectives from future experiments, are discussed.
Neutrino oscillations in matter provide a unique probe of new physics. Leveraging the advent of neutrino appearance data from NOvA and T2K in recent years, we investigate the presence of CP-violating neutrino non-standard interactions in the oscillation data. We first show how to very simply approximate the expected NSI parameters to resolve differences between two long-baseline appearance experiments analytically. Then, by combining recent NOvA and T2K data, we find a tantalizing hint of CP-violating NSI preferring a new complex phase that is close to maximal: $phi_{emu}$ or $phi_{etau}approx3pi/2$ with $|epsilon_{emu}|$ or $|epsilon_{etau}|sim0.2$. We then compare the results from long-baseline data to constraints from IceCube and COHERENT.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا