No Arabic abstract
We study a two-level system (atom, superconducting qubit or quantum dot) strongly coupled to the single photonic mode of a cavity, in the presence of incoherent pumping and including detuning and dephasing. This system displays a striking quantum to classical transition. On the grounds of several approximations that reproduce to various degrees exact results obtained numerically, we separate five regimes of operations, that we term linear, quantum, lasing, quenching and thermal. In the fully quantized picture, the lasing regime arises as a condensation of dressed states and manifests itself as a Mollow triplet structure in the direct emitter photoluminescence spectrum, which embeds fundamental features of the full-field quantization description of light-matter interactions.
The propagation of $N$ photons in one dimensional waveguides coupled to $M$ qubits is discussed, both in the strong and ultrastrong qubit-waveguide coupling. Special emphasis is placed on the characterisation of the nonlinear response and its linear limit for the scattered photons as a function of $N$, $M$, qubit inter distance and light-matter coupling. The quantum evolution is numerically solved via the Matrix Product States technique. Both the time evolution for the field and qubits is computed. The nonlinear character (as a function of $N/M$) depends on the computed observable. While perfect reflection is obtained for $N/M cong 1$, photon-photon correlations are still resolved for ratios $N/M= 2/20$. Inter-qubit distance enhances the nonlinear response. Moving to the ultrastrong coupling regime, we observe that inelastic processes are emph{robust} against the number of qubits and that the qubit-qubit interaction mediated by the photons is qualitatively modified. The theory developed in this work modelises experiments in circuit QED, photonic crystals and dielectric waveguides.
Polariton-based devices require materials where light-matter coupling under ambient conditions exceeds losses, but our current selection of such materials is limited. Here we measured the dispersion of polaritons formed by the $A$ and $B$ excitons in thin MoS$_2$ slabs by imaging their optical near fields. We combined fully tunable laser excitation in the visible with a scattering near-field optical microscope to excite polaritons and image their optical near fields. We obtained the properties of bulk MoS$_2$ from fits to the slab dispersion. The in-plane excitons are in the strong regime of light-matter coupling with a coupling strength ($40-100,$meV) that exceeds their losses by at least a factor of two. The coupling becomes comparable to the exciton binding energy, which is known as very strong coupling. MoS$_2$ and other transition metal dichalcogenides are excellent materials for future polariton devices.
The regime of strong light-matter coupling is typically associated with weak excitation. With current realizations of cavity-QED systems, strong coupling may persevere even at elevated excitation levels sufficient to cross the threshold to lasing. In the presence of stimulated emission, the vacuum-Rabi doublet in the emission spectrum is modified and the established criterion for strong coupling no longer applies. We provide a generalized criterion for strong coupling and the corresponding emission spectrum, which includes the influence of higher Jaynes-Cummings states. The applicability is demonstrated in a theory-experiment comparison of a few-emitter quantum-dot--micropillar laser as a particular realization of the driven dissipative Jaynes-Cummings model. Furthermore, we address the question if and for which parameters true single-emitter lasing can be achieved, and provide evidence for the coexistence of strong coupling and lasing in our system in the presence of background emitter contributions.
We explore the nonlinear response of tailor-cut light-matter hybrid states in a novel regime, where both the Rabi frequency induced by a coherent driving field and the vacuum Rabi frequency set by a cavity field are comparable to the carrier frequency of light. In this previously unexplored strong-field limit of ultrastrong coupling, subcycle pump-probe and multi-wave mixing nonlinearities between different polariton states violate the normal-mode approximation while ultrastrong coupling remains intact, as confirmed by our mean-field model. We expect such custom-cut nonlinearities of hybridized elementary excitations to facilitate non-classical light sources, quantum phase transitions, or cavity chemistry with virtual photons.
It is well known that the majorization condition is the necessary and sufficient condition for the deterministic transformations of both pure bipartite entangled states by local operations and coherent states under incoherent operations. In this paper, we present two explicit protocols for these transformations. We first present a permutation-based protocol which provides a method for the single-step transformation of $d$-dimensional coherent states. We also obtain generalized solutions of this protocol for some special cases of $d$-level systems. Then, we present an alternative protocol where we use $d$-level ($d$ $<$ $d$) subspace solutions of the permutation-based protocol to achieve the complete transformation as a sequence of coherent-state transformations. We show that these two protocols also provide solutions for deterministic transformations of pure bipartite entangled states.