Do you want to publish a course? Click here

A Molecular Star Formation Law in the Atomic Gas Dominated Regime in Nearby Galaxies

107   0   0.0 ( 0 )
 Added by Andreas Schruba
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use the IRAM HERACLES survey to study CO emission from 33 nearby spiral galaxies down to very low intensities. Using atomic hydrogen (HI) data, mostly from THINGS, we predict the local mean CO velocity from the mean HI velocity. By renormalizing the CO velocity axis so that zero corresponds to the local mean HI velocity we are able to stack spectra coherently over large regions as function of radius. This enables us to measure CO intensities with high significance as low as Ico = 0.3 K km/s (H2_SD = 1 Msun/pc2), an improvement of about one order of magnitude over previous studies. We detect CO out to radii Rgal = R25 and find the CO radial profile to follow a uniform exponential decline with scale length of 0.2 R25. Comparing our sensitive CO profiles to matched profiles of HI, Halpha, FUV, and IR emission at 24um and 70um, we observe a tight, roughly linear relation between CO and IR intensity that does not show any notable break between regions that are dominated by molecular (H2) gas (H2_SD > HI_SD) and those dominated by atomic gas (H2_SD < HI_SD). We use combinations of FUV+24um and Halpha+24um to estimate the recent star formation rate (SFR) surface density, SFR_SD, and find approximately linear relations between SFR_SD and H2_SD. We interpret this as evidence for stars forming in molecular gas with little dependence on the local total gas surface density. While galaxies display small internal variations in the SFR-to-H2 ratio, we do observe systematic galaxy-to-galaxy variations. These galaxy-to-galaxy variations dominate the scatter in relations between CO and SFR tracers measured at large scales. The variations have the sense that less massive galaxies exhibit larger ratios of SFR-to-CO than massive galaxies. Unlike the SFR-to-CO ratio, the balance between HI and H2 depends strongly on the total gas surface density and radius. It must also depend on additional parameters.



rate research

Read More

This study explores the effects of different assumptions and systematics on the determination of the local, spatially resolved star formation law. Using four star formation rate (SFR) tracers (Halpha with azimuthally averaged extinction correction, mid-infrared 24 micron, combined Halpha and mid-infrared 24 micron, and combined far-ultraviolet and mid-infrared 24 micron), several fitting procedures, and different sampling strategies we probe the relation between SFR and molecular gas at various spatial resolutions and surface densities within the central 6.5 kpc in the disk of NGC4254. We find that in the high surface brightness regions of NGC4254 the form of the molecular gas star formation law is robustly determined and approximately linear and independent of the assumed fraction of diffuse emission and the SFR tracer employed. When the low surface brightness regions are included, the slope of the star formation law depends primarily on the assumed fraction of diffuse emission. In such case, results range from linear when the fraction of diffuse emission in the SFR tracer is ~30% or less (or when diffuse emission is removed in both the star formation and the molecular gas tracer), to super-linear when the diffuse fraction is ~50% and above. We find that the tightness of the correlation between gas and star formation varies with the choice of star formation tracer. The 24 micron SFR tracer by itself shows the tightest correlation with the molecular gas surface density, whereas the Halpha corrected for extinction using an azimuthally-averaged correction shows the highest dispersion. We find that for R<0.5R_25 the local star formation efficiency is constant and similar to that observed in other large spirals, with a molecular gas depletion time ~2 Gyr.
181 - F. Bigiel , A. Leroy , F. Walter 2010
High resolution, multi-wavelength maps of a sizeable set of nearby galaxies have made it possible to study how the surface densities of HI, H2 and star formation rate (Sigma_HI, Sigma_H2, Sigma_SFR) relate on scales of a few hundred parsecs. At these scales, individual galaxy disks are comfortably resolved, making it possible to assess gas-SFR relations with respect to environment within galaxies. Sigma_H2, traced by CO intensity, shows a strong correlation with Sigma_SFR and the ratio between these two quantities, the molecular gas depletion time, appears to be constant at about 2Gyr in large spiral galaxies. Within the star-forming disks of galaxies, Sigma_SFR shows almost no correlation with Sigma_HI. In the outer parts of galaxies, however, Sigma_SFR does scale with Sigma_HI, though with large scatter. Combining data from these different environments yields a distribution with multiple regimes in Sigma_gas - Sigma_SFR space. If the underlying assumptions to convert observables to physical quantities are matched, even combined datasets based on different SFR tracers, methodologies and spatial scales occupy a well define locus in Sigma_gas - Sigma_SFR space.
The molecular gas content of local early-type galaxies is constrained and discussed in relation to their evolution. First, as part of the Atlas3D survey, we present the first complete, large (260 objects), volume-limited single-dish survey of CO in normal local early-type galaxies. We find a surprisingly high detection rate of 22%, independent of luminosity and at best weakly dependent on environment. Second, the extent of the molecular gas is constrained with CO synthesis imaging, and a variety of morphologies is revealed. The kinematics of the molecular gas and stars are often misaligned, implying an external gas origin in over a third of the systems, although this behaviour is drastically diffferent between field and cluster environments. Third, many objects appear to be in the process of forming regular kpc-size decoupled disks, and a star formation sequence can be sketched by piecing together multi-wavelength information on the molecular gas, current star formation, and young stars. Last, early-type galaxies do not seem to systematically obey all our usual prejudices regarding star formation, following the standard Schmidt-Kennicutt law but not the far infrared-radio correlation. This may suggest a greater diversity in star formation processes than observed in disk galaxies. Using multiple molecular tracers, we are thus starting to probe the physical conditions of the cold gas in early-types.
116 - F. Bigiel , A.K. Leroy , F. Walter 2011
We combine new sensitive, wide-field CO data from the HERACLES survey with ultraviolet and infrared data from GALEX and Spitzer to compare the surface densities of H2, Sigma_H2, and recent star formation rate, Sigma_SFR, over many thousands of positions in 30 nearby disk galaxies. We more than quadruple the size of the galaxy sample compared to previous work and include targets with a wide range of galaxy properties. Even though the disk galaxies in this study span a wide range of properties, we find a strong and approximately linear correlation between Sigma_SFR and Sigma_H2 at our common resolution of 1kpc. This implies a roughly constant median H2 consumption time, tau_H2 = Sigma_H2 / Sigma_SFR, of ~2.35Gyr (including heavy elements) across our sample. At 1kpc resolution, there is only a weak correlation between Sigma_H2 and tau_H2 over the range Sigma_H2~5-100M_sun/pc^2, which is probed by our data. We compile a broad set of literature measurements that have been obtained using a variety of star formation tracers, sampling schemes and physical scales and show that overall, these data yield almost exactly the same results, although with more scatter. We interpret these results as strong, albeit indirect evidence that star formation proceeds in a uniform way in giant molecular clouds in the disks of spiral galaxies.
An imaging survey of CO(1-0), HCN(1-0), and HCO$^+$(1-0) lines in the centers of nearby Seyfert galaxies has been conducted using the Nobeyama Millimeter Array and the RAINBOW interferometer. Preliminary results reveal that 3 Seyferts out of 7 show abnormally high HCN/CO and HCN/HCO$^+$ ratios, which cannot occur even in nuclear starburst galaxies. We suggest that the enhanced HCN emission originated from X-ray irradiated dense obscuring tori, and that these molecular line ratios can be a new diagnostic tool to search for ``pure AGNs. According to our HCN diagram, we suggest that NGC 1068, NGC 1097, and NGC 5194 host ``pure AGNs, whereas Seyfert nuclei of NGC 3079, NGC 6764, and NGC 7469 may be ``composite in nature.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا