Do you want to publish a course? Click here

Stationary inversion of a two level system coupled to an off-resonant cavity with strong dissipation

225   0   0.0 ( 0 )
 Added by Stephen Hughes
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an off-resonant excitation scheme that realizes pronounced stationary inversion in a two level system. The created inversion exploits a cavity-assisted two photon resonance to enhance the multi-photon regime of nonlinear cavity QED and survives even in a semiconductor environment, where the cavity decay rate is comparable to the cavity-dot coupling rate. Exciton populations of greater than 0.75 are obtained in the presence of realistic decay and pure dephasing. Quantum trajectory simulations and quantum master equation calculations help elucidate the underlying physics and delineate the limitations of a simplified rate equation model. Experimental signatures of inversion and multi-photon cavity QED are predicted in the fluorescence intensity and second-order correlation function measured as a function of drive power.



rate research

Read More

250 - S. Hughes , P. Yao , F. Milde 2011
We present a medium-dependent quantum optics approach to describe the influence of electron-acoustic phonon coupling on the emission spectra of a strongly coupled quantum-dot cavity system. Using a canonical Hamiltonian for light quantization and a photon Green function formalism, phonons are included to all orders through the dot polarizability function obtained within the independent Boson model. We derive simple user-friendly analytical expressions for the linear quantum light spectrum, including the influence from both exciton and cavity-emission decay channels. In the regime of semiconductor cavity-QED, we study cavity emission for various exciton-cavity detunings and demonstrate rich spectral asymmetries as well as cavity-mode suppression and enhancement effects. Our technique is nonperturbative, and non-Markovian, and can be applied to study photon emission from a wide range of semiconductor quantum dot structures, including waveguides and coupled cavity arrays. We compare our theory directly to recent and apparently puzzling experimental data for a single site-controlled quantum dot in a photonic crystal cavity and show good agreement as a function of cavity-dot detuning and as a function of temperature.
The problem of Rabi oscillations in a qubit coupled to a fluctuator and in contact with a heath bath is considered. A scheme is developed for taking into account both phase and energy relaxation in a phenomenological way, while taking full account of the quantum dynamics of the four-level system subject to a driving AC field. Significant suppression of the Rabi oscillations is found when the qubit and fluctuator are close to resonance. The effect of the fluctuator state on the read-out signal is discussed. This effect is shown to modify the observed signal significantly. This may be relevant to recent experiments by Simmonds et al. [Phys. Rev. Lett. 93, 077003 (2004)].
We have observed anomalous transport properties for a 50 nm Bi dot in the Coulomb-blockade regime. Over a range of gate voltages, Coulomb blockade peaks are suppressed at low bias, and dramatic structure appears in the current at higher bias. We propose that the state of the dot is determined self-consistently with the state of a nearby two-level system (TLS) to which it is electrostatically coupled. As a gate voltage is swept, the ground state alternates between states of the TLS, leading to skipped Coulomb-blockade peaks at low bias. At a fixed gate voltage and high bias, transport may occur through a cascade of excited states connected by the dynamic switching of the TLS.
We compare the photoluminescence spectrum of an indium arsenide (InAs) quantum dot (QD) that is strongly coupled to a photonic crystal cavity under above band excitation (ABE) and quasi-resonant excitation (QRE). We show that off-resonant cavity feeding, which manifests itself in a bare cavity emission peak at the strong coupling point, is suppressed by as much as 40% under QRE relative to ABE. We attribute this suppression to a reduced probability of QD charging because electrons and holes are created in pairs inside the QD. We investigate the pump power dependence of the cavity feeding and show that, below saturation, the ratio of the bare cavity emission to polariton emission for ABE is independent of pump power, while for QRE there is linear pump power dependence. These results suggest that the biexciton plays an important role in cavity feeding for QRE.
Coupling electromagnetic waves in a cavity and mechanical vibrations via the radiation pressure of the photons [1,2] is a promising platform for investigations of quantum mechanical properties of motion of macroscopic bodies and thereby the limits of quantum mechanics [3,4]. A drawback is that the effect of one photon tends to be tiny, and hence one of the pressing challenges is to substantially increase the interaction strength towards the scale of the cavity damping rate. A novel scenario is to introduce into the setup a quantum two-level system (qubit), which, besides strengthening the coupling, allows for rich physics via strongly enhanced nonlinearities [5-8]. Addressing these issues, here we present a design of cavity optomechanics in the microwave frequency regime involving a Josephson junction qubit. We demonstrate boosting of the radiation pressure interaction energy by six orders of magnitude, allowing to approach the strong coupling regime, where a single quantum of vibrations shifts the cavity frequency by more than its linewidth. We observe nonlinear phenomena at single-photon energies, such as an enhanced damping due to the two-level system. This work opens up nonlinear cavity optomechanics as a plausible tool for the study of quantum properties of motion.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا