Do you want to publish a course? Click here

The Formation of Kiloparsec-Scale HI Holes in Dwarf Galaxies

167   0   0.0 ( 0 )
 Added by Steven Warren
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

The origin of kpc-scale holes in the atomic hydrogen (H I) distributions of some nearby dwarf irregular galaxies presents an intriguing problem. Star formation histories (SFHs) derived from resolved stars give us the unique opportunity to study past star forming events that may have helped shape the currently visible H I distribution. Our sample of five nearby dwarf irregular galaxies spans over an order of magnitude in both total H I mass and absolute B-band magnitude and is at the low mass end of previously studied systems. We use Very Large Array H I line data to estimate the energy required to create the centrally dominant hole in each galaxy. We compare this energy estimate to the past energy released by the underlying stellar populations computed from SFHs derived from data taken with the Hubble Space Telescope. The inferred integrated stellar energy released within the characteristic ages exceeds our energy estimates for creating the holes in all cases, assuming expected efficiencies. Therefore, it appears that stellar feedback provides sufficient energy to produce the observed holes. However, we find no obvious signature of single star forming events responsible for the observed structures when comparing the global SFHs of each galaxy in our sample to each other or to those of dwarf irregular galaxies reported in the literature. We also fail to find evidence of a central star cluster in FUV or Halpha imaging. We conclude that large H I holes are likely formed from multiple generations of star formation and only under suitable interstellar medium conditions.



rate research

Read More

We study the relationship between dense gas and star formation in the Antennae galaxies by comparing ALMA observations of dense gas tracers (HCN, HCO$^+$, and HNC $mathrm{J}=1-0$) to the total infrared luminosity ($mathrm{L_{TIR}}$) calculated using data from the textit{Herschel} Space Observatory and the textit{Spitzer} Space Telescope. We compare the luminosities of our SFR and gas tracers using aperture photometry and employing two methods for defining apertures. We taper the ALMA dataset to match the resolution of our $mathrm{L_{TIR}}$ maps and present new detections of dense gas emission from complexes in the overlap and western arm regions. Using OVRO CO $mathrm{J}=1-0$ data, we compare with the total molecular gas content, $mathrm{M(H_2)_{tot}}$, and calculate star formation efficiencies and dense gas mass fractions for these different regions. We derive HCN, HCO$^+$ and HNC upper limits for apertures where emission was not significantly detected, as we expect emission from dense gas should be present in most star-forming regions. The Antennae extends the linear $mathrm{L_{TIR}-L_{HCN}}$ relationship found in previous studies. The $mathrm{L_{TIR}-L_{HCN}}$ ratio varies by up to a factor of $sim$10 across different regions of the Antennae implying variations in the star formation efficiency of dense gas, with the nuclei, NGC 4038 and NGC 4039, showing the lowest SFE$_mathrm{dense}$ (0.44 and 0.70 $times10^{-8}$ yr$^{-1}$). The nuclei also exhibit the highest dense gas fractions ($sim 9.1%$ and $sim7.9%$).
Neutral hydrogen (HI) velocity dispersions are believed to be set by turbulence in the interstellar medium (ISM). Although turbulence is widely believed to be driven by star formation (SF), recent studies have shown that this driving mechanism may not be dominant in regions of low SF rate surface density (SFRSD), such as found in dwarf galaxies or the outer regions of spirals. We have generated average HI line profiles in a number of nearby dwarfs and low-mass spirals by co-adding HI spectra in regions with either a common radius or SFRSD. We find that the spatially-resolved superprofiles are composed of a central narrow peak (5-15 km/s) with higher velocity wings to either side. With the assumption that the central peak reflects the turbulent velocity dispersion, we compare HI kinematics to local ISM properties, including surface mass densities and measures of SF. The HI velocity dispersion is correlated most strongly with surface mass density, which points at a gravitational origin for turbulence, but it is unclear which instabilities can operate efficiently in these systems. SF energy is produced at a level sufficient to drive HI turbulent motions where SFRSD > 10^-4 Msun yr^-1 kpc^-2. At low SF intensities, SF does not supply enough energy for turbulence, nor does it uniquely determine the velocity dispersion. Nevertheless, SF appears to provide a lower threshold for HI velocity dispersions. We find that coupling efficiency decreases with increasing SFRSD, consistent with a picture where SF couples to the ISM with constant efficiency, but that less of that energy is found in HI at higher SFRSD. We examine a number of potential drivers of HI turbulence, including SF, gravitational instabilities, the magnetorotational instability, and accretion, and find that no single mechanism can drive the observed levels of turbulence at low SFRSD. We discuss possible solutions to this conundrum.
HI line widths are typically interpreted as a measure of ISM turbulence, which is potentially driven by star formation. In an effort to better understand the possible connections between line widths and star formation, we have characterized hi{} kinematics in a sample of nearby dwarf galaxies by co-adding line-of-sight spectra after removing the rotational velocity to produce an average, global hi{} line profile. These superprofiles are composed of a central narrow peak (~6-10 km/s) with higher-velocity wings to either side that contain ~10-15% of the total flux. The superprofiles are all very similar, indicating a universal global HI profile for dwarf galaxies. We compare characteristics of the superprofiles to various galaxy properties, such as mass and measures of star formation (SF), with the assumption that the superprofile represents a turbulent peak with energetic wings to either side. We use these quantities to derive average scale heights for the sample galaxies. When comparing to physical properties, we find that the velocity dispersion of the central peak is correlated with $<Sigma_mathrm{HI}>$. The fraction of mass and characteristic velocity of the high velocity wings are correlated with measures of SF, consistent with the picture that SF drives surrounding HI to higher velocities. While gravitational instabilities provide too little energy, the SF in the sample galaxies does provide enough energy through supernovae, with realistic estimates of the coupling efficiency, to produce the observed superprofiles.
CONTEXT: The dynamical mass-to-light (M/L) ratios of massive ultra-compact dwarf galaxies (UCDs) are about 50% higher than predicted by stellar population models. AIMS: Here we investigate the possibility that these elevated M/L ratios are caused by a central black hole (BH), heating up the internal motion of stars. We focus on a sample of ~50 extragalactic UCDs for which velocity dispersions and structural parameters have been measured. METHODS: Using up-to-date distance moduli and a consistent treatment of aperture and seeing effects, we calculate the ratio Psi=(M/L)_{dyn}/(M/L)_{pop} between the dynamical and the stellar population M/L of UCDs. For all UCDs with Psi>1 we estimate the mass of a hypothetical central BH needed to reproduce the observed integrated velocity dispersion. RESULTS: Massive UCDs (M>10^7 M_*) have an average Psi = 1.7 +-0.2, implying notable amounts of dark mass in them. We find that, on average, central BH masses of 10-15% of the UCD mass can explain these elevated dynamical M/L ratios. The implied BH masses in UCDs range from several 10^5 M_* to several 10^7 M_*. In the M_BH-Luminosity plane, UCDs are offset by about two orders of magnitude in luminosity from the relation derived for galaxies. Our findings can be interpreted such that massive UCDs originate from progenitor galaxies with masses around 10^9 M_*, and that those progenitors have SMBH occupation fractions of 60-100%. The suggested UCD progenitor masses agree with predictions from the tidal stripping scenario. Lower-mass UCDs (M<10^7 M_*) exhibit a bimodal distribution in Psi, suggestive of a coexistence of massive globular clusters and tidally stripped galaxies in this mass regime. CONCLUSIONS: Central BHs as relict tracers of tidally stripped progenitor galaxies are a plausible explanation for the elevated dynamical M/L ratios of UCDs.
394 - B. W. Holwerda 2013
Scale-invariant morphology parameters applied to atomic hydrogen maps (HI) of galaxies can be used to quantify the effects of tidal interaction or star-formation on the ISM. Here we apply these parameters, Concentration, Asymmetry, Smoothness, Gini, M20, and the GM parameter, to two public surveys of nearby dwarf galaxies, the VLA-ANGST and LITTLE-THINGS survey, to explore whether tidal interaction or the ongoing or past star-formation is a dominant force shaping the HI disk of these dwarfs. Previously, HI morphological criteria were identified for ongoing spiral-spiral interactions. When we apply these to the Irregular dwarf population, they either select almost all or none of the population. We find that only the Asymmetry-based criteria can be used to identify very isolated dwarfs (i.e., these have a low tidal indication). Otherwise, there is little or no relation between the level of tidal interaction and the HI morphology. We compare the HI morphology to three star-formation rates based on either Halpha, FUV or the resolved stellar population, probing different star-formation time-scales. The HI morphology parameters that trace the inequality of the distribution, the Gini, GM, and M20 parameters, correlate weakly with all these star-formation rates. This is in line with the picture that local physics dominates the ISM appearance and not tidal effects. Finally, we compare the SDSS measures of star-formation and stellar mass to the HI morphological parameters for all four HI surveys. In the two lower-resolution HI surveys (12), there is no relation between star-formation measures and HI morphology. The morphology of the two high-resolution HI surveys (6), the Asymmetry, Smoothness, Gini, M20, and GM, do show a link to the total star-formation, but a weak one.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا