Do you want to publish a course? Click here

The Atlas3D Project - VI. Simulations of binary galaxy mergers and the link with Fast Rotators, Slow Rotators, and Kinematically Distinct Cores

137   0   0.0 ( 0 )
 Added by Maxime Bois
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the formation of early-type galaxies through mergers with a sample of 70 high-resolution (softening length < 60 pc and 12*10^6 particles) numerical simulations of binary mergers of disc galaxies and 16 simulations of ETG remergers. These simulations, designed to accompany observations and models conducted within the Atlas3D project, encompass various mass ratios (from 1:1 to 6:1), initial conditions and orbital parameters. The progenitor disc galaxies are spiral-like with bulge to disc ratios typical of Sb and Sc galaxies. We find that binary mergers of disc galaxies with mass ratios of 3:1 and 6:1 are nearly always classified as Fast Rotators according to the Atlas3D criterion (based on the lambda_R parameter): they preserve the structure of the input fast rotating spiral progenitors. They have intrinsic ellipticities larger than 0.5, cover intrinsic lambda_R values between 0.2 and 0.6, within the range of observed Fast Rotators. Major disc mergers (mass ratios of 2:1 and 1:1) lead to both Fast and Slow Rotators. Most of the Fast Rotators produced in major mergers have intermediate flattening, with ellipticities between 0.4 and 0.6. Most Slow Rotators formed in these binary disc mergers hold a stellar Kinematically Distinct Core (KDC) in their 1-3 central kilo-parsec: these KDCs are built from the stellar components of the progenitors. Besides a handful of specific observed systems -- the counter-rotating discs (2-sigma galaxies) -- these therefore cannot reproduce the observed population of Slow Rotators in the nearby Universe. The mass ratio of the progenitors is a fundamental parameter for the formation of Slow Rotators in these binary mergers, but it also requires a retrograde spin for the earlier-type (Sb) progenitor galaxy with respect to the orbital angular momentum. (Abridged)



rate research

Read More

One quarter of all nearby early-type galaxies (ETGs) outside Virgo host a disc/ring of HI with size from a few to tens of kpc and mass up to ~1e+9 solar masses. Here we investigate whether this HI is related to the presence of a stellar disc within the host making use of the classification of ETGs in fast and slow rotators (FR/SR). We find a large diversity of HI masses and morphologies within both families. Surprisingly, SRs are detected as often, host as much HI and have a similar rate of HI discs/rings as FRs. Accretion of HI is therefore not always linked to the growth of an inner stellar disc. The weak relation between HI and stellar disc is confirmed by their frequent kinematical misalignment in FRs, including cases of polar and counterrotating gas. In SRs the HI is usually polar. This complex picture highlights a diversity of ETG formation histories which may be lost in the relative simplicity of their inner structure and emerges when studying their outer regions. We find that LCDM hydrodynamical simulations have difficulties reproducing the HI properties of ETGs. The gas discs formed in simulations are either too massive or too small depending on the star formation feedback implementation. Kinematical misalignments match the observations only qualitatively. The main point of conflict is that nearly all simulated FRs and a large fraction of all simulated SRs host corotating HI. This establishes the HI properties of ETGs as a novel challenge to simulations.
For early-type galaxies, the ability to sustain a corona of hot, X-ray emitting gas could have played a key role in quenching their star-formation history. Yet, it is still unclear what drives the precise amount of hot gas around these galaxies. By combining photometric and spectroscopic measurements for the early-type galaxies observed during the Atlas3D integral-field survey with measurements of their X-ray luminosity based on X-ray data of both low and high spatial resolution we conclude that the hot-gas content of early-type galaxies can depend on their dynamical structure. Specifically, whereas slow rotators generally have X-ray halos with luminosity L_X,gas and temperature T values that are in line with what is expected if the hot-gas emission is sustained by the thermalisaton of the kinetic energy carried by the stellar-mass loss material, fast rotators tend to display L_X,gas values that fall consistently below the prediction of this model, with similar T values that do not scale with the stellar kinetic energy as observed in the case of slow rotators. Considering that fast rotators are likely to be intrinsically flatter than slow rotators, and that the few L_X,gas-deficient slow rotators also happen to be relatively flat, the observed L_X,gas deficiency in these objects would support the hypothesis whereby flatter galaxies have a harder time in retaining their hot gas. We discuss the implications that a different hot-gas content could have on the fate of both acquired and internally-produced gaseous material, considering in particular how the L_X,gas deficiency of fast rotators would make them more capable to recycle the stellar-mass loss material into new stars than slow rotators. This is consistent with the finding that molecular gas and young stars are detected only in fast rotators in the Atlas3D sample, and that fast rotators tend to dustier than slow rotators. [Abridged]
Using the unique dataset obtained within the course of the SAURON project, a radically new view of the structure, dynamics and stellar populations of early-type galaxies has emerged. We show that galaxies come in two broad flavours (slow and fast rotators), depending on whether or not they exhibit clear large-scale rotation, as indicated via a robust measure of the specific angular momentum of baryons. This property is also linked with other physical characteristics of early-type galaxies, such as: the presence of dynamically decoupled cores, orbital structure and anisotropy, stellar populations and dark matter content. I here report on the observed link between this baryonic angular momentum and a mass sequence, and how this uniquely relates to the building of the red sequence via dissipative/dissipationless mergers and secular evolution.
We present integral-field spectroscopy of 27 galaxies in the Coma cluster observed with the Oxford SWIFT spectrograph, exploring the kinematic morphology-density relationship in a cluster environment richer and denser than any in the ATLAS3D survey. Our new data enables comparison of the kinematic morphology relation in three very different clusters (Virgo, Coma and Abell 1689) as well as to the field/group environment. The Coma sample was selected to match the parent luminosity and ellipticity distributions of the early-type population within a radius 15 (0.43 Mpc) of the cluster centre, and is limited to r = 16 mag (equivalent to M_K = -21.5 mag), sampling one third of that population. From analysis of the lambda-ellipticity diagram, we find 15+-6% of early-type galaxies are slow rotators; this is identical to the fraction found in the field and the average fraction in the Virgo cluster, based on the ATLAS3D data. It is also identical to the average fraction found recently in Abell 1689 by DEugenio et al.. Thus it appears that the average slow rotator fraction of early type galaxies remains remarkably constant across many different environments, spanning five orders of magnitude in galaxy number density. However, within each cluster the slow rotators are generally found in regions of higher projected density, possibly as a result of mass segregation by dynamical friction. These results provide firm constraints on the mechanisms that produce early-type galaxies: they must maintain a fixed ratio between the number of fast rotators and slow rotators while also allowing the total early-type fraction to increase in clusters relative to the field. A complete survey of Coma, sampling hundreds rather than tens of galaxies, could probe a more representative volume of Coma and provide significantly stronger constraints, particularly on how the slow rotator fraction varies at larger radii.
We present FLAMES/GIRAFFE integral field spectroscopy of 30 galaxies in the massive cluster Abell 1689 at z = 0.183. Conducting an analysis similar to that of ATLAS3D, we extend the baseline of the kinematic morphology-density relation by an order of magnitude in projected density and show that it is possible to use existing instruments to identify slow and fast rotators beyond the local Universe. We find 4.5 +- 1.0 slow rotators with a distribution in magnitude similar to those in the Virgo cluster. The overall slow rotator fraction of our Abell 1689 sample is 0.15 +- 0.03, the same as in Virgo using our selection criteria. This suggests that the fraction of slow rotators in a cluster is not strongly dependent on its density. However, within Abell 1689, we find that the fraction of slow rotators increases towards the centre, as was also found in the Virgo cluster.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا