The Poisson boundary of CAT(0) cube complex groups


Abstract in English

We consider a finite-dimensional, locally finite CAT(0) cube complex X admitting a co-compact properly discontinuous countable group of automorphisms G. We construct a natural compact metric space B(X) on which G acts by homeomorphisms, the action being minimal and strongly proximal. Furthermore, for any generating probability measure on G, B(X) admits a unique stationary measure, and when the measure has finite logarithmic moment, it constitutes a compact metric model of the Poisson boundary. We identify a dense G-delta subset of B(X) on which the action of G is Borel-amenable, and describe the relation of these two spaces to the Roller boundary. Our construction can be used to give a simple geometric proof of Property A for the complex. Our methods are based on direct geometric arguments regarding the asymptotic behavior of half-spaces and their limiting ultrafilters, which are of considerable independent interest. In particular we analyze the notions of median and interval in the complex, and use the latter in the proof that B(X) is the Poisson boundary via the strip criterion developed by V. Kaimanovich.

Download