Do you want to publish a course? Click here

Molecular CO(1-0) gas in the z~2 radio galaxy MRC 0152-209

124   0   0.0 ( 0 )
 Added by Bjorn Emonts
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the detection of molecular CO(1-0) gas in the high-z radio galaxy MRC 0152-209 (z = 1.92) with the Australia Telescope Compact Array Broadband Backend (ATCA/CABB). This is the third known detection of CO(1-0) in a high-z radio galaxy to date. CO(1-0) is the most robust tracer of the overall molecular gas content (including the wide-spread, low-density and subthermally excited component), hence observations of CO(1-0) are crucial for studying galaxy evolution in the Early Universe. We derive L(CO) = (6.6 +- 2.0) x 10^10 K km/s pc^2 for MRC 0152-209, which is comparable to that derived from CO(1-0) observations of several high-z submillimetre and starforming BzK galaxies. The CO(1-0) traces a total molecular hydrogen mass of M(H2) = 5 x 10^10 (alpha_x/0.8) Msun. MRC 0152-209 is an infra-red bright radio galaxy, in which a large reservoir of cold molecular gas has not (yet) been depleted by star formation or radio source feedback. Its compact radio source is reliably detected at 40 GHz and has a steep spectral index of alpha = -1.3 between 1.4 and 40 GHz (4-115 GHz in the galaxys rest-frame). MRC 0152-209 is part of an ongoing systematic ATCA/CABB survey of CO(1-0) in high-z radio galaxies between 1.7 < z < 3.



rate research

Read More

189 - B.H.C. Emonts 2013
The high-redshift radio galaxy MRC 1138-262 (`Spiderweb Galaxy; z = 2.16), is one of the most massive systems in the early Universe and surrounded by a dense `web of proto-cluster galaxies. Using the Australia Telescope Compact Array, we detected CO(1-0) emission from cold molecular gas -- the raw ingredient for star formation -- across the Spiderweb Galaxy. We infer a molecular gas mass of M(H2) = 6x10^10 M(sun) (for M(H2)/L(CO)=0.8). While the bulk of the molecular gas coincides with the central radio galaxy, there are indications that a substantial fraction of this gas is associated with satellite galaxies or spread across the inter-galactic medium on scales of tens of kpc. In addition, we tentatively detect CO(1-0) in the star-forming proto-cluster galaxy HAE 229, 250 kpc to the west. Our observations are consistent with the fact that the Spiderweb Galaxy is building up its stellar mass through a massive burst of widespread star formation. At maximum star formation efficiency, the molecular gas will be able to sustain the current star formation rate (SFR ~ 1400 M(sun)/yr, as traced by Seymour et al.) for about 40 Myr. This is similar to the estimated typical lifetime of a major starburst event in infra-red luminous merger systems.
We report the detection of CO(1-0) emission in the strongly lensed high-redshift quasars IRAS F10214+4724 (z=2.286), the Cloverleaf (z=2.558), RX J0911+0551 (z=2.796), SMM J04135+10277 (z=2.846), and MG 0751+2716 (z=3.200), using the Expanded Very Large Array and the Green Bank Telescope. We report lensing-corrected CO(1-0) line luminosities of L(CO) = 0.34-18.4 x 10^10 K km/s pc^2 and total molecular gas masses of M(H2) = 0.27-14.7 x 10^10 Msun for the sources in our sample. Based on CO line ratios relative to previously reported observations in J>=3 rotational transitions and line excitation modeling, we find that the CO(1-0) line strengths in our targets are consistent with single, highly-excited gas components with constant brightness temperature up to mid-J levels. We thus do not find any evidence for luminous extended, low excitation, low surface brightness molecular gas components. These properties are comparable to those found in z>4 quasars with existing CO(1-0) observations. These findings stand in contrast to recent CO(1-0) observations of z~2-4 submillimeter galaxies (SMGs), which have lower CO excitation and show evidence for multiple excitation components, including some low-excitation gas. These findings are consistent with the picture that gas-rich quasars and SMGs represent different stages in the early evolution of massive galaxies.
561 - B.H.C. Emonts 2013
We present a CO(1-0) survey for cold molecular gas in a representative sample of 13 high-z radio galaxies (HzRGs) at 1.4<z<2.8, using the Australia Telescope Compact Array. We detect CO(1-0) emission associated with five sources: MRC 0114-211, MRC 0152-209, MRC 0156-252, MRC 1138-262 and MRC 2048-272. The CO(1-0) luminosities are in the range $L_{rm CO} sim (5 - 9) times 10^{10}$ K km/s pc$^{2}$. For MRC 0152-209 and MRC 1138-262 part of the CO(1-0) emission coincides with the radio galaxy, while part is spread on scales of tens of kpc and likely associated with galaxy mergers. The molecular gas mass derived for these two systems is M$_{rm H2} sim 6 times 10^{10}, {rm M}_{odot}$ (M$_{rm H2}$/$L_{rm CO}$=0.8). For the remaining three CO-detected sources, the CO(1-0) emission is located in the halo (~50-kpc) environment. These three HzRGs are among the fainter far-IR emitters in our sample, suggesting that similar reservoirs of cold molecular halo gas may have been missed in earlier studies due to pre-selection of IR-bright sources. In all three cases the CO(1-0) is aligned along the radio axis and found beyond the brightest radio hot-spot, in a region devoid of 4.5$mu$m emission in Spitzer imaging. The CO(1-0) profiles are broad, with velocity widths of ~ 1000 - 3600 km/s. We discuss several possible scenarios to explain these halo reservoirs of CO(1-0). Following these results, we complement our CO(1-0) study with detections of extended CO from the literature and find at marginal statistical significance (95% level) that CO in HzRGs is preferentially aligned towards the radio jet axis. For the eight sources in which we do not detect CO(1-0), we set realistic upper limits of $L_{rm CO} sim 3-4 times 10^{10}$ K km/s pc$^{2}$. Our survey reveals a CO(1-0) detection rate of 38%, allowing us to compare the CO(1-0) content of HzRGs with that of other types of high-z galaxies.
180 - R. J. Ivison 2010
We report the results of a pilot study with the EVLA of 12CO J=1-0 emission from four SMGs at z=2.2-2.5, each with an existing detection of CO J=3-2. Using the EVLAs most compact configuration we detect strong, broad J=1-0 line emission from all of our targets. The median line width ratio, sigma(1-0)/sigma(3-2) = 1.15 +/- 0.06, suggests that the J=1-0 is more spatially extended than the J=3-2 emission, a situation confirmed by our maps which reveal velocity structure in several cases and typical sizes of ~16 kpc FWHM. The median Tb ratio is r(3-2/1-0) = 0.55 +/- 0.05, noting that our value may be biased high because of the J=3-2-based sample selection. Naively, this suggests gas masses ~2x higher than estimates made using higher-J transitions of CO, with the discrepency due to the difference in assumed Tb ratio. We also estimate masses using the 12CO J=1-0 line and the observed global Tb ratios, assuming standard underlying Tb ratios as well as a limiting SFE, i.e. without calling upon X(CO). Using this new method, we find a median molecular gas mass of (2.5 +/- 0.8) x 10^10 Msun, with a plausible range stretching 3x higher. Even larger masses cannot be ruled out, but are not favoured by dynamical constraints: the median dynamical mass for our sample is (2.3 +/- 1.4) x 10^11 Msun. We examine the Schmidt-Kennicutt relation for all the distant galaxy populations for which CO J=1-0 or J=2-1 data are available, finding small systematic differences. These have previously been interpreted as evidence for different modes of star formation, but we argue that these differences are to be expected, given the still considerable uncertainties. Finally, we discuss the morass of degeneracies surrounding molecular gas mass estimates, the possibilities for breaking them, and the future prospects for imaging and studying cold, quiescent molecular gas at high redshifts [abridged].
We report the detection of CO(1-0) emission toward the lensed L*_UV Lyman-break galaxies (LBGs) MS1512-cB58 (z=2.73) and the Cosmic Eye (z=3.07), using the Expanded Very Large Array. The strength of the CO line emission reveals molecular gas reservoirs with masses of (4.6+/-1.1) x 10^8 (mu_L/32)^-1 (alpha_CO/0.8) Msun and (9.3+/-1.6) x 10^8 (mu_L/28)^-1 (alpha_CO/0.8) Msun, respectively. These observations suggest by ~30%-40% larger gas reservoirs than estimated previously based on CO(3-2) observations due to subthermal excitation of the J=3 line. These observations also suggest gas mass fractions of 0.46+/-0.17 and 0.16+/-0.06. The CO(1-0) emission in the Cosmic Eye is slightly resolved on scales of 4.5+/-1.5, consistent with previous studies of nebular emission lines. This suggests that the molecular gas is associated with the most intensely star-forming regions seen in the ultraviolet (UV). We do not resolve the CO(1-0) emission in cB58 at ~2 resolution, but find that the CO(1-0) emission is also consistent with the position of the UV-brightest emission peak. The gas masses, gas fractions, moderate CO line excitation, and star formation efficiencies in these galaxies are consistent with what is found in nearby luminous infrared galaxies. These observations thus currently represent the best constraints on the molecular gas content of `ordinary (i.e., ~L*_UV) z~3 star-forming galaxies. Despite comparable star formation rates, the gas properties of these young LBGs seem to be different from the recently identified optical/infrared-selected high-z massive, gas-rich star-forming galaxies, which are more gas-rich and massive, but have lower star formation efficiencies, and presumably trace a different galaxy population.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا