Do you want to publish a course? Click here

A Precise Cluster Mass Profile Averaged from the Highest-Quality Lensing Data

84   0   0.0 ( 0 )
 Added by Keiichi Umetsu
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We outline our methods for obtaining high precision mass profiles, combining independent weak-lensing distortion, magnification, and strong-lensing measurements. For massive clusters the strong and weak lensing regimes contribute equal logarithmic coverage of the radial profile. The utility of high-quality data is limited by the cosmic noise from large scale structure along the line of sight. This noise is overcome when stacking clusters, as too are the effects of cluster asphericity and substructure, permitting a stringent test of theoretical models. We derive a mean radial mass profile of four similar mass clusters of high-quality HST and Subaru images, in the range R=40kpc/h to 2800kpc/h, where the inner radial boundary is sufficiently large to avoid smoothing from miscentering effects. The stacked mass profile is detected at 58-sigma significance over the entire radial range, with the contribution from the cosmic noise included. We show that the projected mass profile has a continuously steepening gradient out to beyond the virial radius, in remarkably good agreement with the standard Navarro-Frenk-White form predicted for the family of CDM-dominated halos in gravitational equilibrium. The central slope is constrained to lie in the range, -dln{rho}/dln{r}=0.89^{+0.27}_{-0.39}. The mean concentration is c_{vir}=7.68^{+0.42}_{-0.40} (at a mean virial mass 1.54^{+0.11}_{-0.10}times 10^{15} M_{sun}/h), which is high for relaxed, high-mass clusters, but consistent with LCDM when a sizable projection bias estimated from N-body simulations is considered. This possible tension will be more definitively explored with new cluster surveys, such as CLASH, LoCuSS, Subaru HSC, and XXM-XXL, to construct the c-M relation over a wider mass range.



rate research

Read More

124 - A. Monna , S. Seitz , I. Balestra 2016
We present a detailed strong lensing (SL) mass reconstruction of the core of the galaxy cluster MACSJ 2129.4-0741 ($rm z_{cl}=0.589$) obtained by combining high-resolution HST photometry from the CLASH survey with new spectroscopic observations from the CLASH-VLT survey. A background bright red passive galaxy at $rm z_{sp}=1.36$, sextuply lensed in the cluster core, has four radial lensed images located over the three central cluster members. Further 19 background lensed galaxies are spectroscopically confirmed by our VLT survey, including 3 additional multiple systems. A total of 31 multiple images are used in the lensing analysis. This allows us to trace with high precision the total mass profile of the cluster in its very inner region ($rm R<100$ kpc). Our final lensing mass model reproduces the multiple images systems identified in the cluster core with high accuracy of $0.4$. This translates to an high precision mass reconstruction of MACS 2129, which is constrained at level of 2%. The cluster has Einstein parameter $Theta_E=(29pm4)$, and a projected total mass of $rm M_{tot}(<Theta_E)=(1.35pm0.03)times 10^{14}M_{odot}$ within such radius. Together with the cluster mass profile, we provide here also the complete spectroscopic dataset for the cluster members and lensed images measured with VLT/VIMOS within the CLASH-VLT survey.
We present a parametric strong lensing modeling of the galaxy cluster MS,0440.5+0204 (located at $z$ = 0.19). We have performed a strong lensing mass reconstruction of the cluster using three different models. The first model uses the image positions of four multiple imaged systems (providing 26 constraints). The second one combines strong lensing constraints with dynamical information (velocity dispersion) of the cluster. The third one uses the mass calculated from weak lensing as an additional constraint. Our three models reproduce equally well the image positions of the arcs, with a root-mean-square image equal to $approx$0.5$arcsec$. However, in the third model, the inclusion of the velocity dispersion and the weak-lensing mass allows us to obtain better constraints in the scale radius and the line-of-sight velocity dispersion of the mass profile. For this model, we obtain $r_s$ = 132$^{+30}_{-32}$ kpc, $sigma_s$ = 1203$^{+46}_{-47}$ km s$^{-1}$, M$_{200}$ = 3.1$^{+0.6}_{-0.6}$ $times10^{14}$,M$_{odot}$, and a high concentration, $c_{200}$ = 9.9$^{+2.2}_{-1.4}$. Finally, we used our derived mass profile to calculate the mass up to 1.5 Mpc. We compare it with X-ray estimates previously reported, finding a good agreement.
We precisely constrain the inner mass profile of Abell 2261 (z=0.225) for the first time and determine this cluster is not over-concentrated as found previously, implying a formation time in agreement with {Lambda}CDM expectations. These results are based on strong lensing analyses of new 16-band HST imaging obtained as part of the Cluster Lensing and Supernova survey with Hubble (CLASH). Combining this with revised weak lensing analyses of Subaru wide field imaging with 5-band Subaru + KPNO photometry, we place tight new constraints on the halo virial mass M_vir = 2.2pm0.2times10^15 Modot/h70 (within r approx 3 Mpc/h70) and concentration c = 6.2 pm 0.3 when assuming a spherical halo. This agrees broadly with average c(M,z) predictions from recent {Lambda}CDM simulations which span 5 <~ <c> <~ 8. Our most significant systematic uncertainty is halo elongation along the line of sight. To estimate this, we also derive a mass profile based on archival Chandra X-ray observations and find it to be ~35% lower than our lensing-derived profile at r2500 ~ 600 kpc. Agreement can be achieved by a halo elongated with a ~2:1 axis ratio along our line of sight. For this elongated halo model, we find M_vir = 1.7pm0.2times10^15 Modot/h70 and c_vir = 4.6pm0.2, placing rough lower limits on these values. The need for halo elongation can be partially obviated by non-thermal pressure support and, perhaps entirely, by systematic errors in the X-ray mass measurements. We estimate the effect of background structures based on MMT/Hectospec spectroscopic redshifts and find these tend to lower Mvir further by ~7% and increase cvir by ~5%.
We report the first detection of gravitational lensing due to galaxy clusters using only the polarization of the cosmic microwave background (CMB). The lensing signal is obtained using a new estimator that extracts the lensing dipole signature from stacked images formed by rotating the cluster-centered Stokes $Q/U$ map cutouts along the direction of the locally measured background CMB polarization gradient. Using data from the SPTpol 500 deg$^{2}$ survey at the locations of roughly 18,000 clusters with richness $lambda ge 10$ from the Dark Energy Survey (DES) Year-3 full galaxy cluster catalog, we detect lensing at $4.8sigma$. The mean stacked mass of the selected sample is found to be $(1.43 pm 0.4) times 10^{14} {rm M_{odot}}$ which is in good agreement with optical weak lensing based estimates using DES data and CMB-lensing based estimates using SPTpol temperature data. This measurement is a key first step for cluster cosmology with future low-noise CMB surveys, like CMB-S4, for which CMB polarization will be the primary channel for cluster lensing measurements.
111 - C. Chang , V. Vikram , B. Jain 2015
We present a mass map reconstructed from weak gravitational lensing shear measurements over 139 sq. deg from the Dark Energy Survey (DES) Science Verification data. The mass map probes both luminous and dark matter, thus providing a tool for studying cosmology. We find good agreement between the mass map and the distribution of massive galaxy clusters identified using a red-sequence cluster finder. Potential candidates for super-clusters and voids are identified using these maps. We measure the cross-correlation between the mass map and a magnitude-limited foreground galaxy sample and find a detection at the 5-7 sigma level on a large range of scales. These measurements are consistent with simulated galaxy catalogs based on LCDM N-body simulations, suggesting low systematics uncertainties in the map. We summarize our key findings in this letter; the detailed methodology and tests for systematics are presented in a companion paper.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا