Do you want to publish a course? Click here

Frozen shuffle update for an asymmetric exclusion process on a ring

168   0   0.0 ( 0 )
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We introduce a new rule of motion for a totally asymmetric exclusion process (TASEP) representing pedestrian traffic on a lattice. Its characteristic feature is that the positions of the pedestrians, modeled as hard-core particles, are updated in a fixed predefined order, determined by a phase attached to each of them. We investigate this model analytically and by Monte Carlo simulation on a one-dimensional lattice with periodic boundary conditions. At a critical value of the particle density a transition occurs from a phase with `free flow to one with `jammed flow. We are able to analytically predict the current-density diagram for the infinite system and to find the scaling function that describes the finite size rounding at the transition point.



rate research

Read More

We introduce a new update algorithm for exclusion processes, more suitable for the modeling of pedestrian traffic. Pedestrians are modeled as hard-core particles hopping on a discrete lattice, and are updated in a fixed order, determined by a phase attached to each pedestrian. While the case of periodic boundary conditions was studied in a companion paper, we consider here the case of open boundary conditions. The full phase diagram is predicted analytically and exhibits a transition between a free flow phase and a jammed phase. The density profile is predicted in the frame of a domain wall theory, and compared to Monte Carlo simulations, in particular in the vicinity of the transition.
Motivated by interest in pedestrian traffic we study two lanes (one-dimensional lattices) of length $L$ that intersect at a single site. Each lane is modeled by a TASEP (Totally Asymmetric Exclusion Process). The particles enter and leave lane $sigma$ (where $sigma=1,2$) with probabilities $alpha_sigma$ and $beta_sigma$, respectively. We employ the `frozen shuffle update introduced in earlier work [C. Appert-Rolland et al, J. Stat. Mech. (2011) P07009], in which the particle positions are updated in a fixed random order. We find analytically that each lane may be in a `free flow or in a `jammed state. Hence the phase diagram in the domain $0leqalpha_1,alpha_2leq 1$ consists of four regions with boundaries depending on $beta_1$ and $beta_2$. The regions meet in a single point on the diagonal of the domain. Our analytical predictions for the phase boundaries as well as for the currents and densities in each phase are confirmed by Monte Carlo simulations.
138 - Dominik Lips , Artem Ryabov , 2018
We study the driven Brownian motion of hard rods in a one-dimensional cosine potential with an amplitude large compared to the thermal energy. In a closed system, we find surprising features of the steady-state current in dependence of the particle density. The form of the current-density relation changes greatly with the particle size and can exhibit both a local maximum and minimum. The changes are caused by an interplay of a barrier reduction, blocking and exchange symmetry effect. The latter leads to a current equal to that of non-interacting particles for a particle size commensurate with the period length of the cosine potential. For an open system coupled to particle reservoirs, we predict five different phases of non-equilibrium steady states to occur. Our results show that the particle size can be of crucial importance for non-equilibrium phase transitions in driven systems. Possible experiments for demonstrating our findings are pointed out.
We study the nonequilibrium steady states in asymmetric exclusion processes (TASEP) with open boundary conditions having spatially inhomogeneous hopping rates. Assuming spatially smoothly varying hopping rates with a few (or no) discontinuities, we show that the steady states are in general classified by the steady state currents in direct analogy with open TASEPs having uniform hopping rates. We calculate the steady state density profiles, which are now space-dependent. We also obtain the phase diagrams in the plane of the control parameters, which though have phase boundaries that are in general curved lines, have the same topology as their counterparts for conventional open TASEPs, independent of the form of the hopping rate functions. This reveals a type of universality, not encountered in critical phenomena.
We revisit the totally asymmetric simple exclusion process with open boundaries (TASEP), focussing on the recent discovery by de Gier and Essler that the model has a dynamical transition along a nontrivial line in the phase diagram. This line coincides neither with any change in the steady-state properties of the TASEP, nor the corresponding line predicted by domain wall theory. We provide numerical evidence that the TASEP indeed has a dynamical transition along the de Gier-Essler line, finding that the most convincing evidence was obtained from Density Matrix Renormalisation Group (DMRG) calculations. By contrast, we find that the dynamical transition is rather hard to see in direct Monte Carlo simulations of the TASEP. We furthermore discuss in general terms scenarios that admit a distinction between static and dynamic phase behaviour.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا