Do you want to publish a course? Click here

Study of the optimal conditions for NV- center formation in type 1b diamond, using photoluminescence and positron annihilation spectroscopies

93   0   0.0 ( 0 )
 Added by Francois Treussart
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We studied the parameters to optimize the production of negatively-charged nitrogen-vacancy color centers (NV-) in type~1b single crystal diamond using proton irradiation followed by thermal annealing under vacuum. Several samples were treated under different irradiation and annealing conditions and characterized by slow positron beam Doppler-broadening and photoluminescence (PL) spectroscopies. At high proton fluences another complex vacancy defect appears limiting the formation of NV-. Concentrations as high as 2.3 x 10^18 cm^-3 of NV- have been estimated from PL measurements. Furthermore, we inferred the trapping coefficient of positrons by NV-. This study brings insight into the production of a high concentration of NV- in diamond, which is of utmost importance in ultra-sensitive magnetometry and quantum hybrid systems applications.



rate research

Read More

The study establishes that the degree of optically induced spin polarization that can be achieved for NV$^- $in 1b diamond is limited by the concentration of single substitutional nitrogen, N$^0$ . The polarization of the individual NV centres in the diamond is dependent on the separation of the NV$^-$ and the nitrogen donor. When the NV$^-$ - N$^+$ pair separation is large the properties of the pair will be as for single sites and a high degree of spin polarization attainable. When the separation decreases the emission is reduced, the lifetime shortened and the spin polarization downgraded. The deterioration occurs as a consequence of electron tunneling in the excited state from NV$^-$ to N$^+$ and results in an optical cycle that includes NV$^0$. The tunneling process is linear in optical excitation and more prevalent the closer the N$^+$ is to the NV$^-$ centre. However, the separation between the NV$^-$ and its donor N$^+$ can be effected by light through the excitation of NV$^-$ and/or ionization of N$^0$. The optical excitation that creates the spin polarization can also modify the sample properties and during excitation creates charge dynamics. The consequence is that the magnitude of spin polarization, the spin relaxation and coherence times T$_1$ and T$_2$ have a dependence on the nitrogen concentration and on the excitation wavelength. The adjacent N$^+$ gives an electric field that Stark shifts the NV$^-$ transitions and for an ensemble results in line broadening. It is observation of changes of these Stark induced effects that allow the variation in NV$^-$ - N$^+$ separation to be monitored. Spectroscopic measurements including that of the varying line widths are central to the study. They are made at low temperatures and include extensive measurements of the NV$^-$ optical transition at 637 nm, the infrared transition at 1042 nm and ODMR at 2.87 GHz.
Single charge detection with nanoscale spatial resolution in ambient conditions is a current frontier in metrology that has diverse interdisciplinary applications. Here, such single charge detection is demonstrated using two nitrogen-vacancy (NV) centers in diamond. One NV center is employed as a sensitive electrometer to detect the change in electric field created by the displacement of a single electron resulting from the optical switching of the other NV center between its neutral (NV$^0$) and negative (NV$^-$) charge states. As a consequence, our measurements also provide direct insight into the charge dynamics inside the material.
Treatment of lab-grown diamond by electron irradiation and annealing has enabled quantum sensors based on negatively-charged nitrogen-vacancy (NV$^text{-}$) centers to demonstrate record sensitivities. cite{Clevenson2015,Wolf2015,Barry2016,Chatzidrosos2017}. Here we investigate the irradiation and annealing process applied to 28 diamond samples using a new ambient-temperature, all-optical approach. As the presence of the neutrally-charged nitrogen-vacancy (NV$^text{0}$) center is deleterious to sensor performance, this photoluminescence decomposition analysis (PDA) is first employed to determine the concentration ratio of NV$^text{-}$ to NV$^0$ in diamond samples from the measured photoluminescence spectrum. The analysis hinges on (i) isolating each NV charge states emission spectrum and (ii) measuring the NV$^text{-}$ to NV$^0$ emission ratio, which is found to be 2.5$pm$0.5 under low-intensity 532 nm illumination. Using the PDA method, we measure the effects of irradiation and annealing on conversion of substitutional nitrogen to NV centers. Combining these measurements with a phenomenological model for diamond irradiation and annealing, we extract an estimated monovacancy creation rate of $0.52pm 0.26$ cm$^{text{-1}}$ for 1 MeV electron irradiation and an estimated monovacancy diffusion coefficient of 1.8 nm$^2$/s at 850~$^circ$C. Finally we find that irradiation doses $gtrsim 10^{18}$ e$^text{-}$/cm$^2$ deteriorate the NV$^text{-}$ decoherence time $T_2$ whereas $T_1$ is unaffected up to the the maximum investigated dose of $5times 10^{18}$ e$^text{-}$/cm$^2$.
The negatively charged nitrogen-vacancy (NV-) center in diamond has realized new frontiers in quantum technology. Here, the centers optical and spin resonances are observed under hydrostatic pressures up to 60 GPa. Our observations motivate powerful new techniques to measure pressure and image high pressure magnetic and electric phenomena. Our observations further reveal a fundamental inadequacy of the current model of the center and provide new insight into its electronic structure.
Significant attention has been recently focused on the realization of high precision nano-thermometry using the spin-resonance temperature shift of the negatively charged nitrogen-vacancy (NV-) center in diamond. However, the precise physical origins of the temperature shift is yet to be understood. Here, the shifts of the centers optical and spin resonances are observed and a model is developed that identifies the origin of each shift to be a combination of thermal expansion and electron-phonon interactions. Our results provide new insight into the centers vibronic properties and reveal implications for NV- thermometry.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا